cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360142 Bitwise encoding of the left half, initially fully occupied, state of the 1D cellular automaton from A359303 after n steps.

This page as a plain text file.
%I A360142 #28 Dec 19 2024 11:46:19
%S A360142 0,1,2,2,4,5,8,9,10,17,18,18,20,35,36,37,40,69,73,74,81,138,145,146,
%T A360142 146,148,163,276,291,292,293,296,325,553,582,585,586,593,650,1105,
%U A360142 1162,1169,1170,1172,1187,1300,2211,2324,2339,2340,2341,2344,2373,2601
%N A360142 Bitwise encoding of the left half, initially fully occupied, state of the 1D cellular automaton from A359303 after n steps.
%C A360142 See A359303 for how the automaton steps.
%C A360142 The automaton state is a bi-infinite string of 1's and 0's of the form ...1111 middle 0000... and the left half here is the part which began as 1's.
%C A360142 The left half state is encoded in an integer by inverting the bits (0<->1) and interpreting the them from right to left as binary from least to most significant bit.
%H A360142 Kevin Ryde, <a href="/A360142/b360142.txt">Table of n, a(n) for n = 0..3000</a>
%H A360142 Kevin Ryde, <a href="/A360141/a360141.gp.txt">PARI/GP Code</a>
%e A360142 Following the state progression from A359303 (state(n)) is converted to the sequence (a(n)) by:
%e A360142                state(0) =   ..1111|0000..
%e A360142                             ..1111|
%e A360142                             ..0000|
%e A360142    a(0) = 0 = bits               0
%e A360142                state(1) =   ..1110|1000..
%e A360142                             ..1110|
%e A360142                             ..0001|
%e A360142    a(1) = 1 = bits               1
%e A360142                state(2) = ..111101|10000..
%e A360142                           ..111101|
%e A360142                           ..000010|
%e A360142    a(2) = 2 = bits              10
%e A360142                state(3) = ..111101|10000..
%e A360142                           ..111101|
%e A360142                           ..000010|
%e A360142    a(3) = 2 = bits              10
%e A360142                state(4) = ..111011|01000..
%e A360142                           ..111011|
%e A360142                           ..000100|
%e A360142    a(4) = 4 = bits             100
%e A360142                state(5) = ..111010|11000..
%e A360142                           ..111010|
%e A360142                           ..000101|
%e A360142    a(5) = 5 = bits             101
%t A360142 ClearAll[{s, prop, checkprop, doprop, run, p, a, j,runneg}];
%t A360142 prop[s_]:=(p=Array[0#&, Length[s]];
%t A360142 Do[If[i==1 ||i==Length[s], p[[i]]=0,
%t A360142 {p[[i-1]], p[[i]], p[[i+1]]}+=
%t A360142 Piecewise[{{{1, -1, 0}, {s[[i-1]], s[[i]], s[[i+1]]}=={0, 1, 1}},
%t A360142 {{0, -1, 1}, {s[[i-1]], s[[i]], s[[i+1]]}=={1, 1, 0}}}, {0, 0, 0}]], {i, 1, Length[s]-1} ];
%t A360142 Return[p])
%t A360142 checkprop[s_]:=(p=s;
%t A360142 Do[If[p[[i]]==2, {p[[i-1]], p[[i]], p[[i+1]]}={0, 0, 0}], {i, 2, Length[s]-1}];
%t A360142 Return[p])
%t A360142 doprop[s_]:= Return[s +checkprop[prop[s]]]
%t A360142 runneg[n_]:=( s=Join[Array[#/#&, n+5], Array[0#&, n+5]] ; Table[Drop[Nest[doprop[#]&, s, k],-(n+5)], {k, 0, n}])
%t A360142 a[j_]:=FromDigits[(runneg[j+1]/.{0->1,1->0})[[j+1, All]],2]
%t A360142 (* Table[a[n],{n,0,10,1}]          *)
%t A360142 (* returns the first 11 elements   *)
%t A360142 (* {0,1,2,2,4,5,8,9,10,17,18}      *)
%o A360142 (PARI) \\ See links.
%Y A360142 Cf. A359303, A360141.
%K A360142 nonn,base
%O A360142 0,3
%A A360142 _Raphael J. F. Berger_, Jan 27 2023