A360155 Primes of the form m^2 + 2*(k+1)^2 such that m^2 + 2*k^2 is also prime.
17, 59, 89, 131, 137, 233, 401, 449, 587, 617, 659, 683, 857, 971, 1019, 1097, 1217, 1283, 1361, 1481, 1499, 1571, 1667, 1787, 1889, 2081, 2129, 2411, 2441, 2531, 2729, 2843, 2969, 3137, 3203, 3257, 3371, 3491, 3617, 4019, 4073
Offset: 1
Keywords
Examples
The first 3 such prime pairs are (11,17) = (3^2 + 2*1^2, 3^2 + 2*2^2) with m=3 and k=1, (41,59) = (3^2 + 2*4^2, 3^2 + 2*5^2) with m=3 and k=4, (83,89) = (9^2 + 2*1^2, 9^2 + 2*2^2) with m=9 and k=1.
Crossrefs
Formula
If m^2 + 2*k^2 and m^2 + 2*(k+1)^2 are primes, then m == 3 (mod 6) and k == 1 (mod 3).
Comments