cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360156 a(n) is the sum of the even unitary divisors of 2*n.

Original entry on oeis.org

2, 4, 8, 8, 12, 16, 16, 16, 20, 24, 24, 32, 28, 32, 48, 32, 36, 40, 40, 48, 64, 48, 48, 64, 52, 56, 56, 64, 60, 96, 64, 64, 96, 72, 96, 80, 76, 80, 112, 96, 84, 128, 88, 96, 120, 96, 96, 128, 100, 104, 144, 112, 108, 112, 144, 128, 160, 120, 120, 192, 124, 128
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2023

Keywords

Comments

a(n) is the unitary analog of A146076(2*n).

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^(e + 1) * usigma[n/2^e]]; Array[a, 100]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + 1)} ;
    a(n) = {my(e = valuation(n, 2)); (1 << (e+1)) * usigma(n >> e); }

Formula

a(n) = Sum_{even d|(2*n), gcd(d, 2*n/d)=1} d.
a(n) = A034448(2*n) - A192066(2*n).
a(n) = A192066(2*n) - A328258(2*n).
a(n) = A171977(n) * A192066(n).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (7*zeta(3)).
Dirichlet g.f. of b(n): (zeta(s)*zeta(s-1)/zeta(2*s-1))*(2^(s+1)-2)/(2^(2*s)-2), where b(n) is the sum of the even unitary divisors of n: b(n) = a(n/2) if n is even and 0 otherwise.