This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360157 #16 Mar 21 2023 15:23:16 %S A360157 1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1, %T A360157 1,2,1,1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1, %U A360157 1,1,1,2,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1 %N A360157 a(n) is the number of unitary divisors of n that are odd squares. %C A360157 First differs from A298735 at n = 27. %C A360157 The unitary analog of A298735. %C A360157 The least term that is larger than 2 is a(225) = 4. %H A360157 Amiram Eldar, <a href="/A360157/b360157.txt">Table of n, a(n) for n = 1..10000</a> %F A360157 Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = 1 if e is odd and 2 if e is even. %F A360157 Dirichlet g.f.: (zeta(s)*zeta(2*s)/zeta(3*s)) * (4^s + 2^s)/(4^s + 2^s + 1). %F A360157 Sum_{k=1..n} a(k) ~ c * n, where c = Pi^2/(7*zeta(3)) = 1.172942380817... . %F A360157 More precise asymptotics: Sum_{k=1..n} a(k) ~ Pi^2 * n / (7*zeta(3)) + (4 + sqrt(2)) * zeta(1/2) * sqrt(n) / (7*zeta(3/2)). - _Vaclav Kotesovec_, Jan 29 2023 %t A360157 f[p_, e_] := If[OddQ[e], 1, 2]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A360157 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, if(f[i, 1] == 2, 1, 2)));} %Y A360157 Cf. A002117, A013661, A016754, A034444, A056624, A298735. %K A360157 nonn,easy,mult %O A360157 1,9 %A A360157 _Amiram Eldar_, Jan 29 2023