cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A360160 a(n) is the sum of unitary divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 50, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 26, 1, 1, 1, 1, 1, 82, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The unitary analog of A360159.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, if(f[i, 2]%2, 1, f[i, 1]^f[i, 2] + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} d.
a(n) = A358347(n) if n is not of the form (2*m - 1)*4^k where m >= 1, k >= 1 (A108269), and otherwise it equals A358347(n)/(A006519(n)+1).
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = p^e + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-2)/zeta(3*s-2))*(2^(3*s)-2^(s+2))/(2^(3*s)-4).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (2*sqrt(2)/(4*sqrt(2)-1)) * zeta(3/2)/(3*zeta(5/2)) = 0.3942576405... .
Showing 1-1 of 1 results.