cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360162 a(n) is the sum of the square roots of the unitary divisors of n that are squares.

This page as a plain text file.
%I A360162 #9 Jan 29 2023 12:10:16
%S A360162 1,1,1,3,1,1,1,1,4,1,1,3,1,1,1,5,1,4,1,3,1,1,1,1,6,1,1,3,1,1,1,1,1,1,
%T A360162 1,12,1,1,1,1,1,1,1,3,4,1,1,5,8,6,1,3,1,1,1,1,1,1,1,3,1,1,4,9,1,1,1,3,
%U A360162 1,1,1,4,1,1,6,3,1,1,1,5,10,1,1,3,1,1,1
%N A360162 a(n) is the sum of the square roots of the unitary divisors of n that are squares.
%C A360162 The number of unitary divisors of n that are squares is A056624(n) and their sum is A358347(n).
%C A360162 The unitary analog of A069290.
%H A360162 Amiram Eldar, <a href="/A360162/b360162.txt">Table of n, a(n) for n = 1..10000</a>
%F A360162 a(n) = Sum_{d|n, gcd(d, n/d)=1, d square} sqrt(d).
%F A360162 Multiplicative with a(p^e) = p^(e/2) + 1 if e is even, and 1 if e is odd.
%F A360162 Dirichlet g.f.: zeta(s)*zeta(2*s-1)/zeta(3*s-1).
%F A360162 Sum_{k=1..n} a(k) ~ (3*n/Pi^2)*(log(n) + 3*gamma - 1 - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).
%t A360162 f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A360162 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1)); }
%Y A360162 Cf. A001620, A056624, A069290, A306016, A358347.
%K A360162 nonn,easy,mult
%O A360162 1,4
%A A360162 _Amiram Eldar_, Jan 29 2023