cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360164 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares.

This page as a plain text file.
%I A360164 #9 Jan 29 2023 12:07:15
%S A360164 1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,6,1,1,1,1,1,1,1,1,1,
%T A360164 1,4,1,1,1,1,1,1,1,1,4,1,1,1,8,6,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,
%U A360164 1,1,1,4,1,1,6,1,1,1,1,1,10,1,1,1,1,1,1
%N A360164 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares.
%C A360164 First differs from A336649 at n = 27.
%C A360164 The unitary analog of A360163.
%H A360164 Amiram Eldar, <a href="/A360164/b360164.txt">Table of n, a(n) for n = 1..10000</a>
%F A360164 a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} sqrt(d).
%F A360164 a(n) = A360162(n) if n is not of the form (2*m - 1)*4^k where m >= 1, k >= 1 (A108269).
%F A360164 Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = p^(e/2) + 1 if e is even and 1 if e is odd.
%F A360164 Dirichlet g.f.: (zeta(s)*zeta(2*s-1)/zeta(3*s-1))*(2^(3*s)-2^(s+1))/(2^(3*s)-2).
%F A360164 Sum_{k=1..n} a(k) ~ (2*n/Pi^2)*(log(n) + 3*gamma - 1 + log(2) - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).
%t A360164 f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A360164 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1))); }
%Y A360164 Cf. A001620, A056624, A069290, A108269, A306016, A336649, A358347, A360163.
%K A360164 nonn,easy,mult
%O A360164 1,9
%A A360164 _Amiram Eldar_, Jan 29 2023