cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360165 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares minus the sum of the square roots of the unitary divisors of n that are even squares.

This page as a plain text file.
%I A360165 #10 Jan 29 2023 12:08:13
%S A360165 1,1,1,-1,1,1,1,1,4,1,1,-1,1,1,1,-3,1,4,1,-1,1,1,1,1,6,1,1,-1,1,1,1,1,
%T A360165 1,1,1,-4,1,1,1,1,1,1,1,-1,4,1,1,-3,8,6,1,-1,1,1,1,1,1,1,1,-1,1,1,4,
%U A360165 -7,1,1,1,-1,1,1,1,4,1,1,6,-1,1,1,1,-3,10,1
%N A360165 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares minus the sum of the square roots of the unitary divisors of n that are even squares.
%C A360165 The unitary analog of A347176.
%H A360165 Amiram Eldar, <a href="/A360165/b360165.txt">Table of n, a(n) for n = 1..10000</a>
%F A360165 a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} (-1)^(d+1)*sqrt(d).
%F A360165 a(n) = A360164(n) - 2 * A360162(n).
%F A360165 Multiplicative with a(2^e) = 1 - 2^(e/2) if e is even and 1 otherwise, and for p > 2, a(p^e) = p^(e/2) + 1 if e is even and 1 if e is odd.
%F A360165 Dirichlet g.f.: (zeta(s)*zeta(2*s-1)/zeta(3*s-1))*(2^(3*s)-2^(s+2)+2)/(2^(3*s)-2).
%F A360165 Sum_{k=1..n} a(k) ~ (n/Pi^2)*(log(n) + 3*gamma - 1 + 4*log(2) - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).
%t A360165 f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; f[2, e_] := If[OddQ[e], 1, 1 - 2^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A360165 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, if(f[i, 2]%2, 1, 1 - f[i, 1]^(f[i, 2]/2)), if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1))); }
%Y A360165 Cf. A001620, A306016, A347176, A360162, A360164.
%K A360165 sign,easy,mult
%O A360165 1,9
%A A360165 _Amiram Eldar_, Jan 29 2023