cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360173 Irregular triangle (an infinite binary tree) read by rows. The tree has root node 0, in row n=0. Each node then has left child m - n if nonnegative and right child m + n. Where m is the value of the parent node and n is the row of the children.

This page as a plain text file.
%I A360173 #30 Apr 16 2025 09:04:21
%S A360173 0,1,3,0,6,4,2,10,9,7,5,15,3,15,1,13,11,9,21,10,8,22,8,6,20,4,18,2,16,
%T A360173 14,28,2,18,0,16,14,30,0,16,14,12,28,12,10,26,10,8,24,6,22,20,36,11,9,
%U A360173 27,9,7,25,5,23,21,39,9,7,25,5,23,3,21,19,37,3,21
%N A360173 Irregular triangle (an infinite binary tree) read by rows. The tree has root node 0, in row n=0. Each node then has left child m - n if nonnegative and right child m + n. Where m is the value of the parent node and n is the row of the children.
%C A360173 A node will have a left child only if the value of that child is greater than or equal to 0. But, each node will have a right child, since adding n will always be greater than 0.
%C A360173 The n-th row will have A141002(n) nodes. The leftmost border is A008344 and the rightmost is A000217.
%H A360173 Rémy Sigrist, <a href="/A360173/b360173.txt">Table of n, a(n) for n = 0..9395</a> (rows for n = 0..17 flattened)
%e A360173 The binary tree starts with root 0 in row n = 0. In row n = 3, the parent node m = 3 has the first left child since 3 - 3 >= 0.
%e A360173 The tree begins:
%e A360173 row
%e A360173 [n]
%e A360173 [0]           0
%e A360173                \
%e A360173 [1]             1
%e A360173                  \
%e A360173 [2]            ___3___
%e A360173               /       \
%e A360173              /         \
%e A360173 [3]         0         __6__
%e A360173              \       /     \
%e A360173 [4]           4     2      10
%e A360173                \     \    /  \
%e A360173 [5]             9     7  5    15
%p A360173 T:= proc(n) option remember; `if`(n=0, 0, map(x->
%p A360173       [`if`(x<n, [][], x-n), x+n][], [T(n-1)])[])
%p A360173     end:
%p A360173 seq(T(n), n=0..10);  # _Alois P. Heinz_, Jan 30 2023
%t A360173 row[n_] := Module[{r = {0}}, For[h = 1, h <= n, h++, r = Flatten[If[#-h >= 0, {#-h, #+h}, {#+h}]& /@ r]]; r];
%t A360173 Table[row[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 16 2025, after _Rémy Sigrist_ *)
%o A360173 (Python)
%o A360173 def A360173_rowlist(row_n):
%o A360173     A = [[0]]
%o A360173     for i in range(0,row_n):
%o A360173         A.append([])
%o A360173         for j in range(0,len(A[i])):
%o A360173             x = A[i][j]
%o A360173             if x - i -1 >= 0:
%o A360173                 A[i+1].append(x-i-1)
%o A360173             if x + i + 1 >= 0:
%o A360173                 A[i+1].append(x+i+1)
%o A360173     return(A)
%o A360173 (PARI) row(n) = { my (r=[0]); for (h=1, n, r=concat(apply(v->if (v-h>=0, [v-h,v+h], [v+h]), r))); return (r) } \\ _Rémy Sigrist_, Jan 31 2023
%Y A360173 Cf. A000217, A008344, A141001, A141002.
%Y A360173 Row sums give A360229.
%K A360173 nonn,look,tabf,easy
%O A360173 0,3
%A A360173 _John Tyler Rascoe_, Jan 28 2023