A360176 Triangle read by rows. T(n, k) = Sum_{j=k..n} binomial(n, j) * (-j)^(n - j) * (-1)^(j - k)* A360177(j, k).
1, 0, 1, 0, -5, 1, 0, 37, -15, 1, 0, -393, 223, -30, 1, 0, 5481, -3815, 745, -50, 1, 0, -95053, 76051, -18870, 1865, -75, 1, 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1, 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 0, 1; [2] 0, -5, 1; [3] 0, 37, -15, 1; [4] 0, -393, 223, -30, 1; [5] 0, 5481, -3815, 745, -50, 1; [6] 0, -95053, 76051, -18870, 1865, -75, 1; [7] 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1; [8] 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1;
Programs
-
Maple
T := (n, k) -> add(binomial(n, j) * (-j)^(n - j) * (-1)^(j - k) * A360177(j, k), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Alternative: egf := k -> (1 - exp(-LambertW(x*exp(-x))))^k / k!: ser := k -> series(egf(k), x, 22): T := (n, k) -> n!*coeff(ser(k), x, n): for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
Formula
E.g.f. of column k: (1 - exp(-LambertW(x*exp(-x))))^k / k!.