cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360190 Starting from 1, successively take the smallest "Choix de Bruxelles" with factor 13 which is not already in the sequence.

This page as a plain text file.
%I A360190 #43 Jan 09 2025 13:03:49
%S A360190 1,13,133,1333,13333,133333,1333333,125641,1256413,12564133,1197241,
%T A360190 117481,9037,90391,9031,90313,903133,90241,902413,9024133,90241333,
%U A360190 6941641,693241,6932413,69324133,6717241,671557,65557,5557,55591,5431,54313,543133,54241
%N A360190 Starting from 1, successively take the smallest "Choix de Bruxelles" with factor 13 which is not already in the sequence.
%C A360190 At a given term t, the Choix de Bruxelles with factor 13 can choose to multiply any decimal digit substring (not starting 0) of t by 13, or divide by 13 if that substring is divisible by 13.
%C A360190 These choices on substrings give various possible next values and here take the smallest not yet in the sequence.
%C A360190 The sequence is finite and ends at a(6851) = 7, since the sole next Choix there is multiplication by 13 to 91, but 91 is already in the sequence at the preceding a(6850) = 91.
%H A360190 Alon Vinkler, <a href="/A360190/b360190.txt">Table of n, a(n) for n = 0..6851</a>
%H A360190 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1902.01444">"Choix de Bruxelles": A New Operation on Positive Integers</a>, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
%H A360190 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, <a href="/A307635/a307635.pdf">"Choix de Bruxelles": A New Operation on Positive Integers</a>, Local copy.
%H A360190 Alon Vinkler, <a href="/A360190/a360190_2.txt">C# Program</a>
%e A360190 Below, square brackets [] represent multiplication by 13 (e.g., [4] = 52); curly brackets {} represent division by 13 (e.g., {26} = 2); digits outside the brackets are not affected by the multiplication or division (e.g., 1[3] = 139 and 1{169} = 113).
%e A360190 We begin with 1 and, at each step, we go to the smallest number possible that hasn't yet appeared in the sequence:
%e A360190  1 --> [1] = 13
%e A360190  13 --> [1]3 = 133
%e A360190  133 --> [1]33 = 1333
%e A360190  1333 --> [1]333 = 13333
%e A360190  13333 --> [1]3333 = 133333
%e A360190  133333 --> [1]33333 = 1333333
%e A360190  1333333 --> 1{333333} = 125641
%e A360190  ... and so on.
%o A360190 (C#) // See Links
%Y A360190 Cf. A358708 (steps by factor 2), A323286 (Choix with factor 2).
%K A360190 nonn,base,fini,full
%O A360190 0,2
%A A360190 _Alon Vinkler_, Jan 29 2023