This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360193 #38 Feb 16 2025 08:34:04 %S A360193 -1,0,2,9,52,445,5166,75019,1300776,26167257,598577770,15337224991, %T A360193 435020120316,13529095809541,457727913937854,16736043791509995, %U A360193 657590281425958096,27631245762003186865,1236355641557737359570,58689534518861119967287 %N A360193 a(n) = Sum_{k=0..n} (k-1)^(k-1) * binomial(n,k). %H A360193 Winston de Greef, <a href="/A360193/b360193.txt">Table of n, a(n) for n = 0..385</a> %H A360193 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A360193 E.g.f.: -exp(x + LambertW(-x)). %F A360193 E.g.f.: x * exp(x) / LambertW(-x). %F A360193 a(n) ~ exp(exp(-1)-1) * n^(n-1). - _Vaclav Kotesovec_, Mar 06 2023 %o A360193 (PARI) a(n) = sum(k=0, n, (k-1)^(k-1)*binomial(n, k)); %o A360193 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-x)))) %o A360193 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(x*exp(x)/lambertw(-x))) %Y A360193 Cf. A088957, A105785, A177885, A277473. %K A360193 sign,easy %O A360193 0,3 %A A360193 _Seiichi Manyama_, Mar 05 2023