cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360194 Array read by antidiagonals: T(m,n) is the number of acyclic spanning subgraphs in the grid graph P_m X P_n.

This page as a plain text file.
%I A360194 #11 Feb 16 2025 08:34:04
%S A360194 1,2,2,4,15,4,8,112,112,8,16,836,3102,836,16,32,6240,85818,85818,6240,
%T A360194 32,64,46576,2373870,8790016,2373870,46576,64,128,347648,65664106,
%U A360194 900013270,900013270,65664106,347648,128,256,2594880,1816344222,92146956300,341008617408,92146956300,1816344222,2594880,256
%N A360194 Array read by antidiagonals: T(m,n) is the number of acyclic spanning subgraphs in the grid graph P_m X P_n.
%C A360194 Acyclic spanning subgraphs are also called spanning forests.
%H A360194 Andrew Howroyd, <a href="/A360194/b360194.txt">Table of n, a(n) for n = 1..435</a>
%H A360194 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AcyclicGraph.html">Acyclic Graph</a>
%H A360194 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>
%e A360194 Table starts:
%e A360194 ========================================================
%e A360194 m\n|  1     2        3           4               5
%e A360194 ---+----------------------------------------------------
%e A360194 1  |  1     2        4           8              16 ...
%e A360194 2  |  2    15      112         836            6240 ...
%e A360194 3  |  4   112     3102       85818         2373870 ...
%e A360194 4  |  8   836    85818     8790016       900013270 ...
%e A360194 5  | 16  6240  2373870   900013270    341008617408 ...
%e A360194 6  | 32 46576 65664106 92146956300 129187804977182 ...
%e A360194    ...
%Y A360194 Rows 1..4 are A000079(n-1), A022026(n-1), A158450, A360195.
%Y A360194 Main diagonal is A080691.
%Y A360194 Cf. A116469 (spanning trees), A359993 (connected spanning subgraphs), A360202.
%K A360194 nonn,tabl
%O A360194 1,2
%A A360194 _Andrew Howroyd_, Jan 29 2023