This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360205 #6 Feb 08 2023 18:11:10 %S A360205 1,0,2,0,4,3,0,12,18,4,0,48,108,48,5,0,240,720,480,100,6,0,1440,5400, %T A360205 4800,1500,180,7,0,10080,45360,50400,21000,3780,294,8,0,80640,423360, %U A360205 564480,294000,70560,8232,448,9,0,725760,4354560,6773760,4233600,1270080,197568,16128,648,10 %N A360205 Triangle read by rows. T(n, k) = (-1)^(n-k)*(k+1)*binomial(n, k)*pochhammer(1-n, n-k). %C A360205 A refinement of the number of partial permutations of an n-set (A002720). %C A360205 Also the coefficients of a shifted derivative of the unsigned Lah polynomials (A271703). %e A360205 Triangle T(n, k) starts: %e A360205 [0] 1; %e A360205 [1] 0, 2; %e A360205 [2] 0, 4, 3; %e A360205 [3] 0, 12, 18, 4; %e A360205 [4] 0, 48, 108, 48, 5; %e A360205 [5] 0, 240, 720, 480, 100, 6; %e A360205 [6] 0, 1440, 5400, 4800, 1500, 180, 7; %e A360205 [7] 0, 10080, 45360, 50400, 21000, 3780, 294, 8; %e A360205 [8] 0, 80640, 423360, 564480, 294000, 70560, 8232, 448, 9; %p A360205 T := (n, k) -> (-1)^(n - k)*(k + 1)*binomial(n, k)*pochhammer(1 - n, n - k): %p A360205 seq(seq(T(n, k), k = 0..n), n = 0..9); %Y A360205 Cf. A052849 (column 1), A045991 (subdiagonal), A002720 (row sums), A271703. %Y A360205 Cf. A069138 (Stirling2 counterpart), A360174 (Stirling1 counterpart). %K A360205 nonn,tabl %O A360205 0,3 %A A360205 _Peter Luschny_, Feb 08 2023