This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360219 #42 Jul 13 2024 13:47:05 %S A360219 1,2,6,20,68,240,864,3152,11616,43136,161152,604992,2280416,8624832, %T A360219 32714688,124399488,474066560,1810053120,6922776576,26517173760, %U A360219 101710338048,390603984896,1501732753408,5779500226560,22263437981184,85835254221824,331193445626880 %N A360219 a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k). %C A360219 Diagonal of rational function 1/(1 - x - y + x^4*y^3). - _Seiichi Manyama_, Mar 23 2023 %H A360219 Seiichi Manyama, <a href="/A360219/b360219.txt">Table of n, a(n) for n = 0..1000</a> %F A360219 G.f.: 1/sqrt(1 - 4*x*(1 - x^3)). %F A360219 n*a(n) = 2*(2*n-1)*a(n-1) - 2*(2*n-4)*a(n-4). %p A360219 A360219 := proc(n) %p A360219 add((-1)^k*binomial(n-3*k,k)*binomial(2*(n-3*k),n-3*k),k=0..n/3) ; %p A360219 end proc: %p A360219 seq(A360219(n),n=0..70) ; # _R. J. Mathar_, Mar 12 2023 %o A360219 (PARI) a(n) = sum(k=0, n\4, (-1)^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k)); %o A360219 (PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x^3))) %Y A360219 Cf. A157004, A360267, A374599. %K A360219 nonn %O A360219 0,2 %A A360219 _Seiichi Manyama_, Jan 31 2023