cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360220 Maximum number of diagonal transversals in an orthogonal diagonal Latin square of order n.

This page as a plain text file.
%I A360220 #26 Mar 24 2023 18:21:19
%S A360220 1,0,0,4,5,0,27,120,333
%N A360220 Maximum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
%C A360220 An orthogonal diagonal Latin square is a diagonal Latin square that has at least one orthogonal diagonal mate.
%C A360220 a(10) >= 866, a(11) >= 4828, a(12) >= 30192, a(13) >= 131106, a(17) >= 204995269, a(19) >= 11254190082.
%C A360220 For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and A287648(n) = a(n). Known exceptions: n=6 and n=10. - _Eduard I. Vatutin_, Feb 17 2023
%C A360220 Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= A354068(n) <= a(n) <= A287648(n). - _Eduard I. Vatutin_, Mar 04 2023
%H A360220 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1709">About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11</a> (in Russian).
%H A360220 Eduard I. Vatutin, <a href="/A360220/a360220.txt">Proving list (best known examples)</a>.
%H A360220 E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_small_orders_thesis.pdf">On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian)
%H A360220 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%Y A360220 Cf. A287647, A287648, A305570, A305571, A349199, A354068.
%K A360220 nonn,more,hard
%O A360220 1,4
%A A360220 _Eduard I. Vatutin_, Jan 30 2023