This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360225 #9 Jan 31 2023 08:36:26 %S A360225 2,3,23,3023,2393023,3023172393023,2393023313023172393023, %T A360225 3023172393023282393023313023172393023, %U A360225 239302331302317239302383023172393023282393023313023172393023 %N A360225 a(1) = 2, a(2) = 3, a(n) = the smallest prime whose digits consist of a(n-2), followed by zero or more digits, followed by a(n). %e A360225 a(4) = 3023 because int(concat('3', '23')) is not prime, and int(concat('3', '0', '23')) is prime. %o A360225 (Python) %o A360225 from sympy import isprime %o A360225 max_n = 10 %o A360225 prev_prev = 2 %o A360225 prev = 3 %o A360225 seq = [prev_prev, prev] %o A360225 for n in range(3, max_n+1): %o A360225 result = int(str(prev_prev) + str(prev)) %o A360225 if not isprime(result): %o A360225 middle_length = 1 %o A360225 keep_searching = True %o A360225 while keep_searching: %o A360225 for middle in range(0, 10**middle_length): %o A360225 result = int(str(prev_prev) + str(middle).zfill(middle_length) + str(prev)) %o A360225 if isprime(result): %o A360225 keep_searching = False %o A360225 break %o A360225 middle_length = middle_length + 1 %o A360225 seq.append(result) %o A360225 prev_prev = prev %o A360225 prev = result %o A360225 print(seq) %Y A360225 Cf. A024770, A024785, A048549, A053583, A085823, A211682, A250052, %K A360225 nonn,base %O A360225 1,1 %A A360225 _Robert C. Lyons_, Jan 30 2023