This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360234 #19 Feb 06 2023 11:28:07 %S A360234 1,1,4,33,414,6750,131963,2957899,73968136,2027178710,60143834893, %T A360234 1914750144642,64984397381766,2339387034919340,88976089246855623, %U A360234 3563952072597604091,149941204887915187568,6610797722288579969347,304837386103152855175255,14675559490665539299350303 %N A360234 G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+2))^(n+1) for n >= 0. %H A360234 Paul D. Hanna, <a href="/A360234/b360234.txt">Table of n, a(n) for n = 0..300</a> %F A360234 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: %F A360234 (1) [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+2))^(n+1) for n>=0. %F A360234 (2) A(x) = Sum_{n>=0} b(n) * x^n/A(x)^n, where b(n) = [x^n] (1 + x*A(x)^(n+2))^(n+1) / (n+1). %F A360234 a(n) ~ c * d^n * n! * n^alfa, where d = A360279 = 2.12460658362428979..., alfa = 3.146325060582260657459991059461810..., c = 0.007037477865521004701131626931596125... - _Vaclav Kotesovec_, Jan 31 2023 %e A360234 G.f.: A(x) = 1 + x + 4*x^2 + 33*x^3 + 414*x^4 + 6750*x^5 + 131963*x^6 + 2957899*x^7 + 73968136*x^8 + 2027178710*x^9 + 60143834893*x^10 + ... %e A360234 RELATED SERIES. %e A360234 G.f. A(x) = B(x/A(x)) where B(x) = B(x*A(x)) begins: %e A360234 B(x) = 1 + x + 5*x^2 + 46*x^3 + 603*x^4 + 10011*x^5 + 197357*x^6 + 4444483*x^7 + 111520277*x^8 + ... + b(n)*x^n + ... %e A360234 such that b(n) = [x^n] (1 + x*A(x)^(n+2))^(n+1) / (n+1), %e A360234 as well as b(n) = [x^n] A(x)^(n+1) / (n+1), %e A360234 so that b(n) begin: %e A360234 [1/1, 2/2, 15/3, 184/4, 3015/5, 60066/6, 1381499/7, 35555864/8, ...]. %e A360234 ILLUSTRATION OF DEFINITION. %e A360234 The table of coefficients of x^k in A(x)^(n+1) begins: %e A360234 n=0: [1, 1, 4, 33, 414, 6750, 131963, 2957899, ...]; %e A360234 n=1: [1, 2, 9, 74, 910, 14592, 281827, 6261048, ...]; %e A360234 n=2: [1, 3, 15, 124, 1500, 23673, 451690, 9944484, ...]; %e A360234 n=3: [1, 4, 22, 184, 2197, 34156, 643878, 14046740, ...]; %e A360234 n=4: [1, 5, 30, 255, 3015, 46221, 860965, 18610170, ...]; %e A360234 n=5: [1, 6, 39, 338, 3969, 60066, 1105794, 23681298, ...]; %e A360234 n=6: [1, 7, 49, 434, 5075, 75908, 1381499, 29311192, ...]; %e A360234 n=7: [1, 8, 60, 544, 6350, 93984, 1691528, 35555864, ...]; ... %e A360234 Compare to the table of coefficients in (1 + x*A(x)^(n+2))^(n+1): %e A360234 n=0: [1, 1, 2, 9, 74, 910, 14592, 281827, ...]; %e A360234 n=1: [1, 2, 7, 36, 287, 3338, 51315, 963446, ...]; %e A360234 n=2: [1, 3, 15, 91, 744, 8337, 122662, 2227101, ...]; %e A360234 n=3: [1, 4, 26, 184, 1591, 17600, 249194, 4361112, ...]; %e A360234 n=4: [1, 5, 40, 325, 3015, 33656, 463710, 7824385, ...]; %e A360234 n=5: [1, 6, 57, 524, 5244, 60066, 816474, 13339956, ...]; %e A360234 n=6: [1, 7, 77, 791, 8547, 101619, 1381499, 22023891, ...]; %e A360234 n=7: [1, 8, 100, 1136, 13234, 164528, 2263888, 35555864, ...]; ... %e A360234 to see that the main diagonals of the tables are the same. %o A360234 (PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[m+1] = (Vec((1+x*Ser(A)^(m+2))^(m+1))[m+1] - Vec(Ser(A)^(m+1))[m+1])/(m+1) ); A[n+1]} %o A360234 for(n=0, 20, print1(a(n), ", ")) %Y A360234 Cf. A360231, A302702, A302703, A360235, A360236, A360237. %Y A360234 Cf. A360346, A360338. %K A360234 nonn %O A360234 0,3 %A A360234 _Paul D. Hanna_, Jan 30 2023