cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360242 Number of integer partitions of n where the parts do not have the same mean as the distinct parts.

This page as a plain text file.
%I A360242 #9 Feb 06 2023 10:06:20
%S A360242 0,0,0,0,1,3,3,9,11,19,25,43,49,82,103,136,183,258,314,435,524,687,
%T A360242 892,1150,1378,1788,2241,2773,3399,4308,5142,6501,7834,9600,11726,
%U A360242 14099,16949,20876,25042,30032,35732,43322,51037,61650,72807,86319,102983,122163
%N A360242 Number of integer partitions of n where the parts do not have the same mean as the distinct parts.
%e A360242 The a(1) = 0 through a(9) = 19 partitions:
%e A360242   .  .  .  (211)  (221)   (411)    (322)     (332)      (441)
%e A360242                   (311)   (3111)   (331)     (422)      (522)
%e A360242                   (2111)  (21111)  (511)     (611)      (711)
%e A360242                                    (2221)    (4211)     (3222)
%e A360242                                    (3211)    (5111)     (3321)
%e A360242                                    (4111)    (22211)    (4221)
%e A360242                                    (22111)   (32111)    (4311)
%e A360242                                    (31111)   (41111)    (5211)
%e A360242                                    (211111)  (221111)   (6111)
%e A360242                                              (311111)   (22221)
%e A360242                                              (2111111)  (32211)
%e A360242                                                         (33111)
%e A360242                                                         (42111)
%e A360242                                                         (51111)
%e A360242                                                         (321111)
%e A360242                                                         (411111)
%e A360242                                                         (2211111)
%e A360242                                                         (3111111)
%e A360242                                                         (21111111)
%e A360242 For example, the partition y = (32211) has mean 9/5 and distinct parts {1,2,3} with mean 2, so y is counted under a(9).
%t A360242 Table[Length[Select[IntegerPartitions[n],Mean[#]!=Mean[Union[#]]&]],{n,0,30}]
%Y A360242 The complement for multiplicities instead of distinct parts is A360068.
%Y A360242 The complement is counted by A360243, ranks A360247.
%Y A360242 For median instead of mean we have A360244, complement A360245.
%Y A360242 These partitions have ranks A360246.
%Y A360242 Sum of A360250 and A360251, ranks A360252 and A360253.
%Y A360242 A000041 counts integer partitions, strict A000009.
%Y A360242 A008284 counts partitions by number of parts.
%Y A360242 A058398 counts partitions by mean, also A327482.
%Y A360242 A067538 counts partitions with integer mean, strict A102627, ranks A316413.
%Y A360242 A116608 counts partitions by number of distinct parts.
%Y A360242 A360071 counts partitions by number of parts and number of distinct parts.
%Y A360242 A360241 counts partitions whose distinct parts have integer mean.
%Y A360242 Cf. A051293, A067340, A240219, A316313, A326567/A326568, A326619/A326620, A326621, A349156.
%K A360242 nonn
%O A360242 0,6
%A A360242 _Gus Wiseman_, Feb 04 2023