This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360242 #9 Feb 06 2023 10:06:20 %S A360242 0,0,0,0,1,3,3,9,11,19,25,43,49,82,103,136,183,258,314,435,524,687, %T A360242 892,1150,1378,1788,2241,2773,3399,4308,5142,6501,7834,9600,11726, %U A360242 14099,16949,20876,25042,30032,35732,43322,51037,61650,72807,86319,102983,122163 %N A360242 Number of integer partitions of n where the parts do not have the same mean as the distinct parts. %e A360242 The a(1) = 0 through a(9) = 19 partitions: %e A360242 . . . (211) (221) (411) (322) (332) (441) %e A360242 (311) (3111) (331) (422) (522) %e A360242 (2111) (21111) (511) (611) (711) %e A360242 (2221) (4211) (3222) %e A360242 (3211) (5111) (3321) %e A360242 (4111) (22211) (4221) %e A360242 (22111) (32111) (4311) %e A360242 (31111) (41111) (5211) %e A360242 (211111) (221111) (6111) %e A360242 (311111) (22221) %e A360242 (2111111) (32211) %e A360242 (33111) %e A360242 (42111) %e A360242 (51111) %e A360242 (321111) %e A360242 (411111) %e A360242 (2211111) %e A360242 (3111111) %e A360242 (21111111) %e A360242 For example, the partition y = (32211) has mean 9/5 and distinct parts {1,2,3} with mean 2, so y is counted under a(9). %t A360242 Table[Length[Select[IntegerPartitions[n],Mean[#]!=Mean[Union[#]]&]],{n,0,30}] %Y A360242 The complement for multiplicities instead of distinct parts is A360068. %Y A360242 The complement is counted by A360243, ranks A360247. %Y A360242 For median instead of mean we have A360244, complement A360245. %Y A360242 These partitions have ranks A360246. %Y A360242 Sum of A360250 and A360251, ranks A360252 and A360253. %Y A360242 A000041 counts integer partitions, strict A000009. %Y A360242 A008284 counts partitions by number of parts. %Y A360242 A058398 counts partitions by mean, also A327482. %Y A360242 A067538 counts partitions with integer mean, strict A102627, ranks A316413. %Y A360242 A116608 counts partitions by number of distinct parts. %Y A360242 A360071 counts partitions by number of parts and number of distinct parts. %Y A360242 A360241 counts partitions whose distinct parts have integer mean. %Y A360242 Cf. A051293, A067340, A240219, A316313, A326567/A326568, A326619/A326620, A326621, A349156. %K A360242 nonn %O A360242 0,6 %A A360242 _Gus Wiseman_, Feb 04 2023