This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360243 #5 Feb 06 2023 10:06:16 %S A360243 1,1,2,3,4,4,8,6,11,11,17,13,28,19,32,40,48,39,71,55,103,105,110,105, %T A360243 197,170,195,237,319,257,462,341,515,543,584,784,1028,761,973,1153, %U A360243 1606,1261,2137,1611,2368,2815,2575,2591,4393,3798,4602,4663,5777,5121 %N A360243 Number of integer partitions of n where the parts have the same mean as the distinct parts. %e A360243 The a(1) = 1 through a(8) = 11 partitions: %e A360243 (1) (2) (3) (4) (5) (6) (7) (8) %e A360243 (11) (21) (22) (32) (33) (43) (44) %e A360243 (111) (31) (41) (42) (52) (53) %e A360243 (1111) (11111) (51) (61) (62) %e A360243 (222) (421) (71) %e A360243 (321) (1111111) (431) %e A360243 (2211) (521) %e A360243 (111111) (2222) %e A360243 (3221) %e A360243 (3311) %e A360243 (11111111) %t A360243 Table[Length[Select[IntegerPartitions[n],Mean[#]==Mean[Union[#]]&]],{n,0,30}] %Y A360243 For multiplicities instead of distinct parts we have A360068. %Y A360243 The complement is counted by A360242, ranks A360246. %Y A360243 For median instead of mean we have A360245, complement A360244. %Y A360243 These partitions have ranks A360247. %Y A360243 Cf. A360250 and A360251, ranks A360252 and A360253. %Y A360243 A000041 counts integer partitions, strict A000009. %Y A360243 A008284 counts partitions by number of parts. %Y A360243 A058398 counts partitions by mean, also A327482. %Y A360243 A067538 counts partitions with integer mean, strict A102627, ranks A316413. %Y A360243 A116608 counts partitions by number of distinct parts. %Y A360243 A360071 counts partitions by number of parts and number of distinct parts. %Y A360243 A360241 counts partitions whose distinct parts have integer mean. %Y A360243 Cf. A051293, A067340, A240219, A316313, A326567/A326568, A326619/A326620, A326621, A349156, A360069. %K A360243 nonn %O A360243 0,3 %A A360243 _Gus Wiseman_, Feb 04 2023