This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360244 #7 Feb 06 2023 10:06:12 %S A360244 0,0,0,0,1,3,3,9,11,17,23,37,42,68,87,110,153,209,261,352,444,573,750, %T A360244 949,1187,1508,1909,2367,2938,3662,4507,5576,6826,8359,10203,12372, %U A360244 15011,18230,21996,26518,31779,38219,45682,54660,65112,77500,92089,109285 %N A360244 Number of integer partitions of n where the parts do not have the same median as the distinct parts. %C A360244 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360244 The a(4) = 1 through a(9) = 17 partitions: %e A360244 (211) (221) (411) (322) (332) (441) %e A360244 (311) (3111) (331) (422) (522) %e A360244 (2111) (21111) (511) (611) (711) %e A360244 (2221) (4211) (3222) %e A360244 (3211) (5111) (3321) %e A360244 (4111) (22211) (4311) %e A360244 (22111) (32111) (5211) %e A360244 (31111) (41111) (6111) %e A360244 (211111) (221111) (22221) %e A360244 (311111) (33111) %e A360244 (2111111) (42111) %e A360244 (51111) %e A360244 (321111) %e A360244 (411111) %e A360244 (2211111) %e A360244 (3111111) %e A360244 (21111111) %e A360244 For example, the partition y = (33111) has median 1, and the distinct parts {1,3} have median 2, so y is counted under a(9). %t A360244 Table[Length[Select[IntegerPartitions[n], Median[#]!=Median[Union[#]]&]],{n,0,30}] %Y A360244 For mean instead of median: A360242, ranks A360246, complement A360243. %Y A360244 These partitions are ranked by A360248. %Y A360244 The complement is A360245, ranked by A360249. %Y A360244 A000041 counts integer partitions, strict A000009. %Y A360244 A008284 counts partitions by number of parts. %Y A360244 A116608 counts partitions by number of distinct parts. %Y A360244 A240219 counts partitions with mean equal to median, ranks A359889. %Y A360244 A325347 counts partitions w/ integer median, strict A359907, ranks A359908. %Y A360244 A359893 and A359901 count partitions by median. %Y A360244 A359894 counts partitions with mean different from median, ranks A359890. %Y A360244 A360071 counts partitions by number of parts and number of distinct parts. %Y A360244 Cf. A000975, A027193, A067659, A326619/A326620, A326621, A359902, A360068, A360241, A360250, A360251. %K A360244 nonn %O A360244 0,6 %A A360244 _Gus Wiseman_, Feb 05 2023