This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360245 #5 Feb 06 2023 10:06:07 %S A360245 1,1,2,3,4,4,8,6,11,13,19,19,35,33,48,66,78,88,124,138,183,219,252, %T A360245 306,388,450,527,643,780,903,1097,1266,1523,1784,2107,2511,2966,3407, %U A360245 4019,4667,5559,6364,7492,8601,10063,11634,13469,15469,17985,20558,23812 %N A360245 Number of integer partitions of n where the parts have the same median as the distinct parts. %C A360245 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A360245 The a(1) = 1 through a(8) = 11 partitions: %e A360245 (1) (2) (3) (4) (5) (6) (7) (8) %e A360245 (11) (21) (22) (32) (33) (43) (44) %e A360245 (111) (31) (41) (42) (52) (53) %e A360245 (1111) (11111) (51) (61) (62) %e A360245 (222) (421) (71) %e A360245 (321) (1111111) (431) %e A360245 (2211) (521) %e A360245 (111111) (2222) %e A360245 (3221) %e A360245 (3311) %e A360245 (11111111) %e A360245 For example, the partition y = (6,4,4,4,1,1) has median 4, and the distinct parts {1,4,6} also have median 4, so y is counted under a(20). %t A360245 Table[Length[Select[IntegerPartitions[n], Median[#]==Median[Union[#]]&]],{n,0,30}] %Y A360245 For mean instead of median: A360242, ranks A360247, complement A360243. %Y A360245 These partitions have ranks A360249. %Y A360245 The complement is A360244, ranks A360248. %Y A360245 A000041 counts integer partitions, strict A000009. %Y A360245 A008284 counts partitions by number of parts. %Y A360245 A116608 counts partitions by number of distinct parts. %Y A360245 A240219 counts partitions with mean equal to median, ranks A359889. %Y A360245 A325347 counts partitions w/ integer median, strict A359907, ranks A359908. %Y A360245 A359893 and A359901 count partitions by median. %Y A360245 A359894 counts partitions with mean different from median, ranks A359890. %Y A360245 A360071 counts partitions by number of parts and number of distinct parts. %Y A360245 Cf. A000975, A027193, A067659, A326619/A326620, A326621, A359902, A360241, A360246, A360250, A360251. %K A360245 nonn %O A360245 0,3 %A A360245 _Gus Wiseman_, Feb 05 2023