cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360246 Numbers for which the prime indices do not have the same mean as the distinct prime indices.

This page as a plain text file.
%I A360246 #8 Feb 08 2023 13:12:01
%S A360246 12,18,20,24,28,40,44,45,48,50,52,54,56,60,63,68,72,75,76,80,84,88,92,
%T A360246 96,98,99,104,108,112,116,117,120,124,126,132,135,136,140,144,147,148,
%U A360246 150,152,153,156,160,162,164,168,171,172,175,176,180,184,188,189
%N A360246 Numbers for which the prime indices do not have the same mean as the distinct prime indices.
%C A360246 First differs from A242416 in having 126.
%C A360246 Contains no squarefree numbers or perfect powers.
%C A360246 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A360246 The terms together with their prime indices begin:
%e A360246    12: {1,1,2}
%e A360246    18: {1,2,2}
%e A360246    20: {1,1,3}
%e A360246    24: {1,1,1,2}
%e A360246    28: {1,1,4}
%e A360246    40: {1,1,1,3}
%e A360246    44: {1,1,5}
%e A360246    45: {2,2,3}
%e A360246    48: {1,1,1,1,2}
%e A360246    50: {1,3,3}
%e A360246    52: {1,1,6}
%e A360246    54: {1,2,2,2}
%e A360246    56: {1,1,1,4}
%e A360246    60: {1,1,2,3}
%e A360246    63: {2,2,4}
%e A360246    68: {1,1,7}
%e A360246    72: {1,1,1,2,2}
%e A360246 The prime indices of 126 are {1,2,2,4} with mean 9/4 and distinct prime indices {1,2,4} with mean 7/3, so 126 is in the sequence.
%t A360246 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360246 Select[Range[100],Mean[prix[#]]!=Mean[Union[prix[#]]]&]
%Y A360246 Signature instead of parts: complement A324570, counted by A114638.
%Y A360246 Signature instead of distinct parts: complement A359903, counted by A360068.
%Y A360246 These partitions are counted by A360242.
%Y A360246 The complement is A360247, counted by A360243.
%Y A360246 For median we have A360248, counted by A360244 (complement A360245).
%Y A360246 Union of A360252 and A360253, counted by A360250 and A360251.
%Y A360246 A058398 counts partitions by mean, also A327482.
%Y A360246 A088529/A088530 gives mean of prime signature (A124010).
%Y A360246 A112798 lists prime indices, length A001222, sum A056239.
%Y A360246 A316413 = numbers whose prime indices have integer mean, distinct A326621.
%Y A360246 A326567/A326568 gives mean of prime indices.
%Y A360246 A326619/A326620 gives mean of distinct prime indices.
%Y A360246 Cf. A000975, A051293, A067340, A067538, A360005, A360241.
%K A360246 nonn
%O A360246 1,1
%A A360246 _Gus Wiseman_, Feb 07 2023