This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360246 #8 Feb 08 2023 13:12:01 %S A360246 12,18,20,24,28,40,44,45,48,50,52,54,56,60,63,68,72,75,76,80,84,88,92, %T A360246 96,98,99,104,108,112,116,117,120,124,126,132,135,136,140,144,147,148, %U A360246 150,152,153,156,160,162,164,168,171,172,175,176,180,184,188,189 %N A360246 Numbers for which the prime indices do not have the same mean as the distinct prime indices. %C A360246 First differs from A242416 in having 126. %C A360246 Contains no squarefree numbers or perfect powers. %C A360246 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A360246 The terms together with their prime indices begin: %e A360246 12: {1,1,2} %e A360246 18: {1,2,2} %e A360246 20: {1,1,3} %e A360246 24: {1,1,1,2} %e A360246 28: {1,1,4} %e A360246 40: {1,1,1,3} %e A360246 44: {1,1,5} %e A360246 45: {2,2,3} %e A360246 48: {1,1,1,1,2} %e A360246 50: {1,3,3} %e A360246 52: {1,1,6} %e A360246 54: {1,2,2,2} %e A360246 56: {1,1,1,4} %e A360246 60: {1,1,2,3} %e A360246 63: {2,2,4} %e A360246 68: {1,1,7} %e A360246 72: {1,1,1,2,2} %e A360246 The prime indices of 126 are {1,2,2,4} with mean 9/4 and distinct prime indices {1,2,4} with mean 7/3, so 126 is in the sequence. %t A360246 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A360246 Select[Range[100],Mean[prix[#]]!=Mean[Union[prix[#]]]&] %Y A360246 Signature instead of parts: complement A324570, counted by A114638. %Y A360246 Signature instead of distinct parts: complement A359903, counted by A360068. %Y A360246 These partitions are counted by A360242. %Y A360246 The complement is A360247, counted by A360243. %Y A360246 For median we have A360248, counted by A360244 (complement A360245). %Y A360246 Union of A360252 and A360253, counted by A360250 and A360251. %Y A360246 A058398 counts partitions by mean, also A327482. %Y A360246 A088529/A088530 gives mean of prime signature (A124010). %Y A360246 A112798 lists prime indices, length A001222, sum A056239. %Y A360246 A316413 = numbers whose prime indices have integer mean, distinct A326621. %Y A360246 A326567/A326568 gives mean of prime indices. %Y A360246 A326619/A326620 gives mean of distinct prime indices. %Y A360246 Cf. A000975, A051293, A067340, A067538, A360005, A360241. %K A360246 nonn %O A360246 1,1 %A A360246 _Gus Wiseman_, Feb 07 2023