cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360247 Numbers for which the prime indices have the same mean as the distinct prime indices.

This page as a plain text file.
%I A360247 #7 May 22 2023 05:43:18
%S A360247 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,30,31,
%T A360247 32,33,34,35,36,37,38,39,41,42,43,46,47,49,51,53,55,57,58,59,61,62,64,
%U A360247 65,66,67,69,70,71,73,74,77,78,79,81,82,83,85,86,87,89,90,91,93,94,95,97,100,101,102,103,105,106,107,109,110,111,113,114,115,118,119,121,122,123,125,127,128,129,130
%N A360247 Numbers for which the prime indices have the same mean as the distinct prime indices.
%C A360247 First differs from A072774 in having 90.
%C A360247 First differs from A242414 in lacking 126.
%C A360247 Includes all squarefree numbers and perfect powers.
%C A360247 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A360247 The prime indices of 900 are {3,3,2,2,1,1} with mean 2, and the distinct prime indices are {1,2,3} also with mean 2, so 900 is in the sequence.
%p A360247 isA360247 := proc(n)
%p A360247     local ifs,pidx,pe,meanAll,meanDist ;
%p A360247     if n = 1 then
%p A360247         return true ;
%p A360247     end if ;
%p A360247     ifs := ifactors(n)[2] ;
%p A360247     # list of prime indices with multiplicity
%p A360247     pidx := [] ;
%p A360247     for pe in ifs do
%p A360247         [numtheory[pi](op(1,pe)),op(2,pe)] ;
%p A360247         pidx := [op(pidx),%] ;
%p A360247     end do:
%p A360247     meanAll := add(op(1,pe)*op(2,pe),pe=pidx) / add(op(2,pe),pe=pidx) ;
%p A360247     meanDist := add(op(1,pe),pe=pidx) / nops(pidx) ;
%p A360247     if meanAll = meanDist then
%p A360247         true;
%p A360247     else
%p A360247         false;
%p A360247     end if;
%p A360247 end proc:
%p A360247 for n from 1 to 130 do
%p A360247     if isA360247(n) then
%p A360247         printf("%d,",n) ;
%p A360247     end if;
%p A360247 end do: # _R. J. Mathar_, May 22 2023
%t A360247 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360247 Select[Range[100],Mean[prix[#]]==Mean[Union[prix[#]]]&]
%Y A360247 Signature instead of parts: A324570, counted by A114638.
%Y A360247 Signature instead of distinct parts: A359903, counted by A360068.
%Y A360247 These partitions are counted by A360243.
%Y A360247 The complement is A360246, counted by A360242.
%Y A360247 For median instead of mean the complement is A360248, counted by A360244.
%Y A360247 For median instead of mean we have A360249, counted by A360245.
%Y A360247 For greater instead of equal mean we have A360252, counted by A360250.
%Y A360247 For lesser instead of equal mean we have A360253, counted by A360251.
%Y A360247 A008284 counts partitions by number of parts, distinct A116608.
%Y A360247 A058398 counts partitions by mean, also A327482.
%Y A360247 A088529/A088530 gives mean of prime signature (A124010).
%Y A360247 A112798 lists prime indices, length A001222, sum A056239.
%Y A360247 A316413 = numbers whose prime indices have integer mean, distinct A326621.
%Y A360247 A326567/A326568 gives mean of prime indices.
%Y A360247 A326619/A326620 gives mean of distinct prime indices.
%Y A360247 Cf. A000975, A051293, A067340, A067538, A360005, A360241.
%K A360247 nonn
%O A360247 1,2
%A A360247 _Gus Wiseman_, Feb 07 2023