cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360248 Numbers for which the prime indices do not have the same median as the distinct prime indices.

This page as a plain text file.
%I A360248 #7 Feb 09 2023 20:49:19
%S A360248 12,18,20,24,28,40,44,45,48,50,52,54,56,60,63,68,72,75,76,80,84,88,92,
%T A360248 96,98,99,104,108,112,116,117,120,124,132,135,136,140,144,147,148,150,
%U A360248 152,153,156,160,162,164,168,171,172,175,176,184,188,189,192,200
%N A360248 Numbers for which the prime indices do not have the same median as the distinct prime indices.
%C A360248 First differs from A242416 in lacking 180, with prime indices {1,1,2,2,3}.
%C A360248 First differs from A360246 in lacking 126 and having 1950.
%C A360248 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A360248 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e A360248 The terms together with their prime indices begin:
%e A360248   12: {1,1,2}
%e A360248   18: {1,2,2}
%e A360248   20: {1,1,3}
%e A360248   24: {1,1,1,2}
%e A360248   28: {1,1,4}
%e A360248   40: {1,1,1,3}
%e A360248   44: {1,1,5}
%e A360248   45: {2,2,3}
%e A360248   48: {1,1,1,1,2}
%e A360248   50: {1,3,3}
%e A360248   52: {1,1,6}
%e A360248   54: {1,2,2,2}
%e A360248   56: {1,1,1,4}
%e A360248   60: {1,1,2,3}
%e A360248   63: {2,2,4}
%e A360248   68: {1,1,7}
%e A360248   72: {1,1,1,2,2}
%e A360248 The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is not in the sequence.
%e A360248 The prime indices of 1950 are {1,2,3,3,6} with median 3 and distinct prime indices {1,2,3,6} with median 5/2, so 1950 is in the sequence.
%t A360248 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360248 Select[Range[100],Median[prix[#]]!=Median[Union[prix[#]]]&]
%Y A360248 These partitions are counted by A360244.
%Y A360248 The complement is A360249, counted by A360245.
%Y A360248 For multiplicities instead of parts: complement of A360453.
%Y A360248 For multiplicities instead of distinct parts: complement of A360454.
%Y A360248 For mean instead of median we have A360246, counted by A360242.
%Y A360248 The complement for mean instead of median is A360247, counted by A360243.
%Y A360248 A112798 lists prime indices, length A001222, sum A056239.
%Y A360248 A326567/A326568 gives mean of prime indices.
%Y A360248 A326619/A326620 gives mean of distinct prime indices.
%Y A360248 A325347 = partitions with integer median, strict A359907, ranked by A359908.
%Y A360248 A359893 and A359901 count partitions by median.
%Y A360248 A360005 gives median of prime indices (times two).
%Y A360248 Cf. A000975, A078174, A316413, A324570, A359890, A360455, A360456.
%K A360248 nonn
%O A360248 1,1
%A A360248 _Gus Wiseman_, Feb 07 2023