cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360249 Numbers for which the prime indices have the same median as the distinct prime indices.

This page as a plain text file.
%I A360249 #8 May 22 2023 05:58:10
%S A360249 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,30,31,
%T A360249 32,33,34,35,36,37,38,39,41,42,43,46,47,49,51,53,55,57,58,59,61,62,64,
%U A360249 65,66,67,69,70,71,73,74,77,78,79,81,82,83,85,86,87,89,90,91,93,94,95,97,100,101,102,103,105,106,107,109,110,111,113,114,115,118,119,121,122,123,125,126,127,128,129,130
%N A360249 Numbers for which the prime indices have the same median as the distinct prime indices.
%C A360249 First differs from A072774 in having 90.
%C A360249 First differs from A242414 in having 180.
%C A360249 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A360249 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%e A360249 The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is in the sequence.
%e A360249 The prime indices of 180 are {1,1,2,2,3} with median 2 and distinct prime indices {1,2,3} with median 2, so 180 is in the sequence.
%p A360249 isA360249 := proc(n)
%p A360249     local ifs,pidx,pe,medAll,medDist ;
%p A360249     if n = 1 then
%p A360249         return true ;
%p A360249     end if ;
%p A360249     ifs := ifactors(n)[2] ;
%p A360249     pidx := [] ;
%p A360249     for pe in ifs do
%p A360249         numtheory[pi](op(1,pe)) ;
%p A360249         pidx := [op(pidx),seq(%,i=1..op(2,pe))] ;
%p A360249     end do:
%p A360249     medAll := stats[describe,median](sort(pidx)) ;
%p A360249     pidx := convert(convert(pidx,set),list) ;
%p A360249     medDist := stats[describe,median](sort(pidx)) ;
%p A360249     if medAll = medDist then
%p A360249         true;
%p A360249     else
%p A360249         false;
%p A360249     end if;
%p A360249 end proc:
%p A360249 for n from 1 to 130 do
%p A360249     if isA360249(n) then
%p A360249         printf("%d,",n) ;
%p A360249     end if;
%p A360249 end do: # _R. J. Mathar_, May 22 2023
%t A360249 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360249 Select[Range[100],Median[prix[#]]==Median[Union[prix[#]]]&]
%Y A360249 These partitions are counted by A360245.
%Y A360249 The complement for mean instead of median is A360246, counted by A360242.
%Y A360249 For mean instead of median we have A360247, counted by A360243.
%Y A360249 The complement is A360248, counted by A360244.
%Y A360249 For multiplicities instead of parts: A360453, counted by A360455.
%Y A360249 For multiplicities instead of distinct parts: A360454, counted by A360456.
%Y A360249 A112798 lists prime indices, length A001222, sum A056239.
%Y A360249 A240219 counts partitions with mean equal to median, ranks A359889.
%Y A360249 A326567/A326568 gives mean of prime indices.
%Y A360249 A326619/A326620 gives mean of distinct prime indices.
%Y A360249 A325347 = partitions with integer median, strict A359907, ranks A359908.
%Y A360249 A359893 and A359901 count partitions by median.
%Y A360249 A359894 = partitions with mean different from median, ranks A359890.
%Y A360249 A360005 gives median of prime indices (times two).
%Y A360249 Cf. A000975, A078174, A316413, A324570, A359903, A360252, A360253.
%K A360249 nonn
%O A360249 1,2
%A A360249 _Gus Wiseman_, Feb 07 2023