This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360250 #5 Feb 07 2023 12:44:28 %S A360250 0,0,0,0,0,1,0,2,2,3,3,9,5,13,15,18,20,37,34,59,51,68,92,134,121,167, %T A360250 203,251,282,387,375,537,561,714,888,958,1042,1408,1618,1939,2076, %U A360250 2650,2764,3479,3863,4431,5387,6520,6688,8098,9041,10614,12084,14773,15469 %N A360250 Number of integer partitions of n where the parts have greater mean than the distinct parts. %F A360250 a(n) + A360251(n) = A360242(n). %F A360250 a(n) + A360251(n) + A360243(n) = A000041(n). %e A360250 The a(5) = 1 through a(12) = 5 partitions: %e A360250 (221) . (331) (332) (441) (442) (443) (552) %e A360250 (2221) (22211) (3321) (3331) (551) (4431) %e A360250 (22221) (222211) (3332) (33321) %e A360250 (4331) (44211) %e A360250 (4421) (2222211) %e A360250 (33221) %e A360250 (33311) %e A360250 (222221) %e A360250 (2222111) %e A360250 For example, the partition y = (4,3,3,1) has mean 11/4 and distinct parts {1,3,4} with mean 8/5, so y is counted under a(11). %t A360250 Table[Length[Select[IntegerPartitions[n],Mean[#]>Mean[Union[#]]&]],{n,0,30}] %Y A360250 For unequal instead of greater we have A360242, ranks A360246. %Y A360250 For equal instead of greater we have A360243, ranks A360247. %Y A360250 For less instead of greater we have A360251, ranks A360253. %Y A360250 These partitions have ranks A360252. %Y A360250 A000041 counts integer partitions, strict A000009. %Y A360250 A008284 counts partitions by number of parts. %Y A360250 A058398 counts partitions by mean, also A327482. %Y A360250 A067538 counts partitions with integer mean, strict A102627, ranks A316413. %Y A360250 A116608 counts partitions by number of distinct parts. %Y A360250 A240219 counts partitions with mean equal to median, ranks A359889. %Y A360250 A359894 counts partitions with mean different from median, ranks A359890. %Y A360250 A360071 counts partitions by number of parts and number of distinct parts. %Y A360250 Cf. A000975, A316313, A326567/A326568, A326619/A326620, A326621, A360068, A360241, A360244, A360245. %K A360250 nonn %O A360250 0,8 %A A360250 _Gus Wiseman_, Feb 06 2023