This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360251 #6 Feb 07 2023 12:43:57 %S A360251 0,0,0,0,1,2,3,7,9,16,22,34,44,69,88,118,163,221,280,376,473,619,800, %T A360251 1016,1257,1621,2038,2522,3117,3921,4767,5964,7273,8886,10838,13141, %U A360251 15907,19468,23424,28093,33656,40672,48273,58171,68944,81888,97596,115643 %N A360251 Number of integer partitions of n where the parts have lesser mean than the distinct parts. %F A360251 a(n) + A360250(n) = A360242(n). %F A360251 a(n) + A360250(n) + A360243(n) = A000041(n). %e A360251 The a(4) = 1 through a(9) = 16 partitions: %e A360251 (211) (311) (411) (322) (422) (522) %e A360251 (2111) (3111) (511) (611) (711) %e A360251 (21111) (3211) (4211) (3222) %e A360251 (4111) (5111) (4221) %e A360251 (22111) (32111) (4311) %e A360251 (31111) (41111) (5211) %e A360251 (211111) (221111) (6111) %e A360251 (311111) (32211) %e A360251 (2111111) (33111) %e A360251 (42111) %e A360251 (51111) %e A360251 (321111) %e A360251 (411111) %e A360251 (2211111) %e A360251 (3111111) %e A360251 (21111111) %e A360251 For example, the partition y = (4,2,2,1) has mean 9/4 and distinct parts {1,2,4} with mean 7/3, so y is counted under a(9). %t A360251 Table[Length[Select[IntegerPartitions[n],Mean[#]<Mean[Union[#]]&]],{n,0,30}] %Y A360251 For unequal instead of less we have A360242, ranks A360246. %Y A360251 For equal instead of less we have A360243, ranks A360247. %Y A360251 For greater instead of less we have A360250, ranks A360252. %Y A360251 These partitions have ranks A360253. %Y A360251 A000041 counts integer partitions, strict A000009. %Y A360251 A008284 counts partitions by number of parts. %Y A360251 A058398 counts partitions by mean, also A327482. %Y A360251 A067538 counts partitions with integer mean, strict A102627, ranks A316413. %Y A360251 A116608 counts partitions by number of distinct parts. %Y A360251 A240219 counts partitions with mean equal to median, ranks A359889. %Y A360251 A359894 counts partitions with mean different from median, ranks A359890. %Y A360251 A360071 counts partitions by number of parts and number of distinct parts. %Y A360251 Cf. A000975, A316313, A326567/A326568, A326619/A326620, A326621, A360068, A360241, A360244, A360245. %K A360251 nonn %O A360251 0,6 %A A360251 _Gus Wiseman_, Feb 06 2023