This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360253 #7 Feb 10 2023 14:29:29 %S A360253 12,20,24,28,40,44,45,48,52,56,60,63,68,72,76,80,84,88,92,96,99,104, %T A360253 112,116,117,120,124,126,132,135,136,140,144,148,152,153,156,160,164, %U A360253 168,171,172,175,176,180,184,188,189,192,198,200,204,207,208,212,220 %N A360253 Numbers for which the prime indices have lesser mean than the distinct prime indices. %C A360253 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A360253 The terms together with their prime indices begin: %e A360253 12: {1,1,2} %e A360253 20: {1,1,3} %e A360253 24: {1,1,1,2} %e A360253 28: {1,1,4} %e A360253 40: {1,1,1,3} %e A360253 44: {1,1,5} %e A360253 45: {2,2,3} %e A360253 48: {1,1,1,1,2} %e A360253 52: {1,1,6} %e A360253 56: {1,1,1,4} %e A360253 60: {1,1,2,3} %e A360253 63: {2,2,4} %e A360253 68: {1,1,7} %e A360253 72: {1,1,1,2,2} %e A360253 For example, the prime indices of 350 are {1,3,3,4} with mean 11/4, and the distinct prime indices are {1,3,4} with mean 8/3, so 350 is not in the sequence. %t A360253 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A360253 Select[Range[100],Mean[prix[#]]<Mean[Union[prix[#]]]&] %Y A360253 These partitions are counted by A360251. %Y A360253 For unequal instead of less we have A360246, counted by A360242. %Y A360253 For equal instead of less we have A360247, counted by A360243. %Y A360253 For greater instead of less we have A360252, counted by A360250. %Y A360253 A112798 lists prime indices, length A001222, sum A056239. %Y A360253 A316413 lists numbers whose indices have integer mean, distinct A326621. %Y A360253 A326567/A326568 gives mean of prime indices. %Y A360253 A326619/A326620 gives mean of distinct prime indices. %Y A360253 Cf. A000975, A051293, A058398, A067340, A067538, A324570, A327482, A359903, A360005, A360241, A360248. %K A360253 nonn %O A360253 1,1 %A A360253 _Gus Wiseman_, Feb 09 2023