This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360254 #9 Feb 21 2023 07:34:04 %S A360254 0,0,0,1,1,1,3,4,7,10,12,18,28,36,52,68,92,119,161,204,269,355,452, %T A360254 571,738,921,1167,1457,1829,2270,2834,3483,4314,5300,6502,7932,9665, %U A360254 11735,14263,17227,20807,25042,30137,36099,43264,51646,61608,73291,87146,103296 %N A360254 Number of integer partitions of n with more adjacent equal parts than distinct parts. %C A360254 None of these partitions is strict. %C A360254 Also the number of integer partitions of n which, after appending 0, have first differences of median 0. %e A360254 The a(3) = 1 through a(9) = 10 partitions: %e A360254 (111) (1111) (11111) (222) (22111) (2222) (333) %e A360254 (21111) (31111) (22211) (22221) %e A360254 (111111) (211111) (41111) (33111) %e A360254 (1111111) (221111) (51111) %e A360254 (311111) (222111) %e A360254 (2111111) (411111) %e A360254 (11111111) (2211111) %e A360254 (3111111) %e A360254 (21111111) %e A360254 (111111111) %e A360254 For example, the partition y = (4,4,3,1,1,1,1) has 0-appended differences (0,1,2,0,0,0,0), with median 0, so y is counted under a(15). %t A360254 Table[Length[Select[IntegerPartitions[n], Length[#]>2*Length[Union[#]]&]],{n,0,30}] %Y A360254 The non-prepended version is A237363. %Y A360254 These partitions have ranks A360558. %Y A360254 For any integer median (not just 0) we have A360688. %Y A360254 A000041 counts integer partitions, strict A000009. %Y A360254 A008284 counts partitions by number of parts. %Y A360254 A116608 counts partitions by number of distinct parts. %Y A360254 A325347 counts partitions w/ integer median, strict A359907, ranks A359908. %Y A360254 A359893 and A359901 count partitions by median, odd-length A359902. %Y A360254 Cf. A000975, A027193, A067538, A102627, A240219, A359894, A360071, A360244, A360555, A360556. %K A360254 nonn %O A360254 0,7 %A A360254 _Gus Wiseman_, Feb 20 2023