This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360255 #14 Feb 13 2023 08:57:34 %S A360255 0,1,3,6,2,10,7,5,15,13,11,9,21,20,4,18,2,16,14,28,12,28,12,26,8,24, %T A360255 22,20,36,21,19,37,21,17,35,17,33,13,31,11,29,27,45,11,31,9,29,27,47, %U A360255 31,7,27,25,45,7,27,23,43,23,41,19,39,17,37,35,55,22,42,18 %N A360255 Irregular triangle (an infinite binary tree) read by rows: see Comments section for definition. %C A360255 The binary tree has root node 0, in row n=0. The left child is m - n and the right child is m + n, where m is the parent node and n is the row of the child. A given node will only have a child if the child is nonnegative and the value of the child is not present in the path from the parent to the root, including the root value itself. %C A360255 The n-th row will have A321535(n) nodes. The rightmost border is A000217. %H A360255 Rémy Sigrist, <a href="/A360255/b360255.txt">Table of n, a(n) for n = 0..9517</a> (rows for n = 0..21 flattened) %e A360255 The binary tree starts with root 0 in row n = 0. In row n = 3, the parent node m = 3 does not have a left child since 3 - 3 = 0 is included in the path from the parent to the root {3,1,0}. %e A360255 The tree begins: %e A360255 row %e A360255 [n] %e A360255 [0] 0 %e A360255 \ %e A360255 [1] 1 %e A360255 \ %e A360255 [2] 3 %e A360255 \ %e A360255 [3] __6__ %e A360255 / \ %e A360255 [4] 2 10 %e A360255 \ / \ %e A360255 [5] 7 5 15 %o A360255 (MATLAB) %o A360255 function a = A360255( max_row ) %o A360255 p = 0; a = 0; pos = 1; %o A360255 for n = 1:max_row %o A360255 for k = pos:length(a) %o A360255 h =[]; o = p(k); %o A360255 while o > 0 %o A360255 h = [h a(o)]; o = p(o); %o A360255 end %o A360255 if a(k)-n > 0 %o A360255 if isempty(find(h == a(k)-n, 1)) %o A360255 p = [p k]; a = [a a(k)-n]; %o A360255 end %o A360255 end %o A360255 if isempty(find(h == a(k)+n, 1)) %o A360255 p = [p k]; a = [a a(k)+n]; %o A360255 end %o A360255 end %o A360255 pos = k+1; %o A360255 end %o A360255 end % _Thomas Scheuerle_, Jan 31 2023 %Y A360255 Cf. A000217, A141001, A141002, A321535, A360173. %K A360255 nonn,tabf %O A360255 0,3 %A A360255 _John Tyler Rascoe_, Jan 30 2023