A360268 A version of the Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer 5 places clockwise from i. Repeat, counting 5 places from the next undeleted integer, until only one integer remains.
1, 1, 1, 3, 4, 4, 3, 1, 7, 3, 9, 3, 9, 1, 7, 13, 2, 8, 14, 20, 5, 11, 17, 23, 4, 10, 16, 22, 28, 4, 10, 16, 22, 28, 34, 4, 10, 16, 22, 28, 34, 40, 3, 9, 15, 21, 27, 33, 39, 45, 51, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 1, 7, 13, 19, 25
Offset: 1
Keywords
Examples
a(7) = 3 because the elimination process gives (^1,2,3,4,5,6,7) -> (1,2,3,4,5,^7) -> (1,2,3,4,^7) -> (^1,2,3,4) -> (1,^3,4) -> (^3,4) -> (3), where ^ denotes the counting reference position. a(13) = 9 => a(14) = (a(13) + 5) mod 14 + 1 = 1.
Links
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = Mod[a[n - 1] + 5, n] + 1; Array[a, 100] (* Amiram Eldar, Feb 03 2023 *)
-
Python
def A360268_up_to_n(n): val = 1 return [val := (val + 5) % i + 1 for i in range(1,n+1)]
Formula
a(n) = (a(n-1) + 5) mod n + 1 if n > 1, a(1) = 1.