cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360277 Primes p that are congruent to 1 mod 2*k, where k = primepi(p) is the index of the prime.

This page as a plain text file.
%I A360277 #27 Feb 09 2023 10:39:22
%S A360277 11,13,1087,64591,64601,64661,3523969,3524249,189963073,189963091,
%T A360277 189963847,189968887,189969319,189969337,1394194181,1394194481,
%U A360277 1394194561,1394197381,1394199221,1394199241,10246935931,10246936019,10246936481,75370121689,75370121857,75370122409
%N A360277 Primes p that are congruent to 1 mod 2*k, where k = primepi(p) is the index of the prime.
%e A360277 11 is a term since k = primepi(11) = 5 and 11 == 1 (mod 2*5).
%e A360277 13 is a term since k = primepi(13) = 6 and 13 == 1 (mod 2*6).
%e A360277 64661 is a term since k = primepi(64661) = 6466 and 64661 == 1 (mod 2*6466).
%o A360277 (PARI) lista(pmax) = {my(k = 0); forprime(p = 1, pmax, k+=2; if((p-1)%k==0, print1(p,", "))); } \\ _Amiram Eldar_, Feb 01 2023
%Y A360277 Subsequence of A048891.
%Y A360277 Cf. A000040, A000720.
%K A360277 nonn
%O A360277 1,1
%A A360277 _Najeem Ziauddin_, Feb 01 2023
%E A360277 a(7)-a(8) from _Michel Marcus_, Feb 01 2023
%E A360277 a(9)-a(23) from _Jon E. Schoenfield_, Feb 01 2023
%E A360277 a(24)-a(26) from _Amiram Eldar_, Feb 01 2023