A360303 a(n) = Sum_{k=1..floor(sqrt(n))} 2^floor(n/k-k).
0, 1, 2, 4, 9, 17, 34, 66, 132, 261, 521, 1033, 2066, 4114, 8226, 16420, 32837, 65605, 131209, 262281, 524554, 1048850, 2097682, 4194834, 8389668, 16778277, 33556517, 67110981, 134221897, 268439625, 536879242, 1073750154, 2147500178, 4294983954, 8589967634, 17179902228, 34359804453
Offset: 0
Examples
For n = 5, floor(sqrt(n)) = 2. So, two bits are set in a(n); they are the bits number floor(5/1-1)=4 and floor(5/2-2)=0, so a(n) = 10001_2 = 17.
Links
- Luc Rousseau, Illustration in black and white, n = 0..100.
- Luc Rousseau, Illustrated bit pattern for the detection of divisors, n = 1..9.
Crossrefs
Cf. A034729.
Programs
-
PARI
a(n)=sum(k=1,floor(sqrt(n)),2^floor(n/k-k))
Formula
a(n) = Sum_{k=1..floor(sqrt(n))} 2^floor(n/k - k).
Comments