cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360305 Lexicographically earliest sequence of integers > 1 such that the products Product_{i = 1+k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct.

This page as a plain text file.
%I A360305 #48 Mar 07 2023 07:42:23
%S A360305 2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,
%T A360305 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,
%U A360305 52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71
%N A360305 Lexicographically earliest sequence of integers > 1 such that the products Product_{i = 1+k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct.
%C A360305 In other words, a(1), a(2), a(1)*a(2), a(3), a(4), a(3)*a(4), a(1)*a(2)*a(3)*a(4), a(5), a(6), a(5)*a(6), etc. are all distinct.
%C A360305 In particular, all terms are distinct (but not necessarily in increasing order).
%C A360305 We can arrange the terms of the sequence as the leaves of a perfect infinite binary tree, the products with e > 0 corresponding to parent nodes; each node will contain a different value and all values will appear in the tree (if n = 2^m+1 for some m > 0, then a(n) will equal the least value > 1 missing so far in the tree).
%C A360305 This sequence is a variant of A361144 where we use products instead of sums.
%C A360305 The data section matches that of A249407, however a(115) = 121 whereas A249407(115) = 120.
%H A360305 Rémy Sigrist, <a href="/A360305/a360305.gp.txt">PARI program</a>
%e A360305 The first terms (at the bottom of the tree) alongside the corresponding products are:
%e A360305                           1067062284288000
%e A360305                   ---------------------------------
%e A360305                604800                        1764322560
%e A360305           -----------------               -----------------
%e A360305          120            5040            24024           73440
%e A360305       ---------       ---------       ---------       ---------
%e A360305       6      20      56      90      132     182     240     306
%e A360305     -----   -----   -----   -----   -----   -----   -----   -----
%e A360305     2   3   4   5   7   8   9  10  11  12  13  14  15  16  17  18
%o A360305 (PARI) See Links section.
%Y A360305 Cf. A249407, A361144, A361234.
%K A360305 nonn
%O A360305 1,1
%A A360305 _Rémy Sigrist_, Mar 03 2023