This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360305 #48 Mar 07 2023 07:42:23 %S A360305 2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28, %T A360305 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51, %U A360305 52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71 %N A360305 Lexicographically earliest sequence of integers > 1 such that the products Product_{i = 1+k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct. %C A360305 In other words, a(1), a(2), a(1)*a(2), a(3), a(4), a(3)*a(4), a(1)*a(2)*a(3)*a(4), a(5), a(6), a(5)*a(6), etc. are all distinct. %C A360305 In particular, all terms are distinct (but not necessarily in increasing order). %C A360305 We can arrange the terms of the sequence as the leaves of a perfect infinite binary tree, the products with e > 0 corresponding to parent nodes; each node will contain a different value and all values will appear in the tree (if n = 2^m+1 for some m > 0, then a(n) will equal the least value > 1 missing so far in the tree). %C A360305 This sequence is a variant of A361144 where we use products instead of sums. %C A360305 The data section matches that of A249407, however a(115) = 121 whereas A249407(115) = 120. %H A360305 Rémy Sigrist, <a href="/A360305/a360305.gp.txt">PARI program</a> %e A360305 The first terms (at the bottom of the tree) alongside the corresponding products are: %e A360305 1067062284288000 %e A360305 --------------------------------- %e A360305 604800 1764322560 %e A360305 ----------------- ----------------- %e A360305 120 5040 24024 73440 %e A360305 --------- --------- --------- --------- %e A360305 6 20 56 90 132 182 240 306 %e A360305 ----- ----- ----- ----- ----- ----- ----- ----- %e A360305 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 %o A360305 (PARI) See Links section. %Y A360305 Cf. A249407, A361144, A361234. %K A360305 nonn %O A360305 1,1 %A A360305 _Rémy Sigrist_, Mar 03 2023