This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360321 #23 Aug 22 2025 11:02:17 %S A360321 1,2,16,130,1070,8902,74724,631902,5376840,45990070,395106656, %T A360321 3407196982,29477061166,255733684010,2224098916300,19384492018770, %U A360321 169270624419390,1480625235653670,12970844831940000,113785067475668550,999400688480388570 %N A360321 a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k). %H A360321 Harvey P. Dale, <a href="/A360321/b360321.txt">Table of n, a(n) for n = 0..1000</a> %F A360321 G.f.: sqrt( (1-5*x)/(1-9*x) ). %F A360321 n*a(n) = 2*(7*n-6)*a(n-1) - 45*(n-2)*a(n-2). %F A360321 Sum_{i=0..n} Sum_{j=0..i} (1/5)^i * a(j) * a(i-j) = (9/5)^n. %F A360321 a(n) ~ 2 * 3^(2*n-1) / sqrt(Pi*n). - _Vaclav Kotesovec_, Feb 04 2023 %F A360321 From _Seiichi Manyama_, Aug 22 2025: (Start) %F A360321 a(n) = (1/4)^n * Sum_{k=0..n} 9^k * 5^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)). %F A360321 a(n) = Sum_{k=0..n} (-1)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End) %t A360321 Table[Sum[5^(n-k) Binomial[n-1,n-k]Binomial[2k,k],{k,0,n}],{n,0,20}] (* _Harvey P. Dale_, Jun 22 2025 *) %o A360321 (PARI) a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k)); %o A360321 (PARI) my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x))) %Y A360321 Cf. A063886, A085362, A360317, A360318, A360319, A360322. %K A360321 nonn,easy,changed %O A360321 0,2 %A A360321 _Seiichi Manyama_, Feb 03 2023