This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360327 #9 Feb 04 2023 14:14:40 %S A360327 1,1,4,1,6,4,1,1,13,6,12,4,1,1,24,1,18,13,1,6,4,12,1,4,31,1,40,1,1,24, %T A360327 32,1,48,18,6,13,1,1,4,6,42,4,1,12,78,1,1,4,1,31,72,1,1,40,72,1,4,1, %U A360327 60,24,1,32,13,1,6,48,68,18,4,6,1,13,1,1,124,1,12 %N A360327 a(n) is the sum of divisors of n that have only prime-indexed prime factors. %C A360327 Equivalently, a(n) is the sum of divisors of the largest divisor of n that has only prime-indexed prime factors. %H A360327 Amiram Eldar, <a href="/A360327/b360327.txt">Table of n, a(n) for n = 1..10000</a> %F A360327 a(n) = 1 if and only if n is in A320628. %F A360327 a(n) = A000203(n) if and only if n is in A076610. %F A360327 a(n) = A000203(A360325(n)). %F A360327 Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p is a prime-indexed prime (A006450), and 1 otherwise. %t A360327 f[p_, e_] := If[PrimeQ[PrimePi[p]], (p^(e+1)-1)/(p-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A360327 (PARI) a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), (p[i]^(e[i]+1)-1)/(p[i]-1), 1));} %Y A360327 Cf. A000203, A006450, A076610, A320628, A360325, A360326. %K A360327 nonn,mult %O A360327 1,3 %A A360327 _Amiram Eldar_, Feb 03 2023