This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360330 #17 Feb 04 2023 14:14:30 %S A360330 1,2,1,3,1,2,2,4,1,2,1,3,2,4,1,5,1,2,2,3,2,2,2,4,1,4,1,6,2,2,1,6,1,2, %T A360330 2,3,2,4,2,4,1,4,2,3,1,4,2,5,3,2,1,6,2,2,1,8,2,4,1,3,2,2,2,7,2,2,1,3, %U A360330 2,4,2,4,2,4,1,6,2,4,2,5,1,2,1,6,1,4,2 %N A360330 a(n) is the number of divisors of n that have only prime factors that are not prime-indexed primes. %C A360330 Equivalently, a(n) is the number of divisors of the largest divisor of n that has only prime factors that are not prime-indexed primes. %H A360330 Amiram Eldar, <a href="/A360330/b360330.txt">Table of n, a(n) for n = 1..10000</a> %F A360330 a(n) = 1 if and only if n is in A076610. %F A360330 a(n) = A000005(n) if and only if n is in A320628. %F A360330 a(n) = A000005(A360329(n)). %F A360330 Multiplicative with a(p^e) = 1 if p is a prime-indexed prime (A006450), and e+1 otherwise (A007821). %p A360330 a:= n-> mul(`if`(isprime(numtheory[pi](i[1])), 1, i[2]+1), i=ifactors(n)[2]): %p A360330 seq(a(n), n=1..87); # _Alois P. Heinz_, Feb 03 2023 %t A360330 f[p_, e_] := If[PrimeQ[PrimePi[p]], 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A360330 (PARI) a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), 1, e[i]+1));} %Y A360330 Cf. A000005, A006450, A007821, A076610, A320628, A360329, A360331. %K A360330 nonn,mult %O A360330 1,2 %A A360330 _Amiram Eldar_, Feb 03 2023