This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360336 #9 Feb 06 2023 12:09:16 %S A360336 1,1,6,99,2608,90800,3835458,187727106,10356030404,632391914502, %T A360336 42217751766193,3053486035335835,237640678130730437, %U A360336 19794116975373467259,1756875217029906875379,165552614838271944281933,16509692094523556884973416,1737510282985845400007263814 %N A360336 G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(3*n))^(n+1) for n >= 0. %H A360336 Paul D. Hanna, <a href="/A360336/b360336.txt">Table of n, a(n) for n = 0..300</a> %F A360336 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: %F A360336 (1) [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(3*n))^(n+1) for n>=0. %F A360336 (2) A(x) = Sum_{n>=0} b(n) * x^n/A(x)^n, where b(n) = [x^n] (1 + x*A(x)^(3*n))^(n+1) / (n+1). %F A360336 a(n) ~ c * d^n * n! * n^alpha, where d = 5.7189630165873859806..., alpha = 1.0541176773983..., c = 0.03951220887392... - _Vaclav Kotesovec_, Feb 06 2023 %e A360336 G.f.: A(x) = 1 + x + 6*x^2 + 99*x^3 + 2608*x^4 + 90800*x^5 + 3835458*x^6 + 187727106*x^7 + 10356030404*x^8 + 632391914502*x^9 + ... %e A360336 RELATED SERIES. %e A360336 G.f. A(x) = B(x/A(x)) where B(x) = B(x*A(x)) begins: %e A360336 B(x) = 1 + x + 7*x^2 + 118*x^3 + 3113*x^4 + 108221*x^5 + 4564720*x^6 + 223208259*x^7 + 12307249017*x^8 + ... + b(n)*x^n + ... %e A360336 such that b(n) = [x^n] (1 + x*A(x)^(3*n))^(n+1) / (n+1), %e A360336 as well as b(n) = [x^n] A(x)^(n+1) / (n+1), %e A360336 so that b(n) begin: %e A360336 [1/1, 2/2, 21/3, 472/4, 15565/5, 649326/6, 31953040/7, 1785666072/8, ...]. %e A360336 ILLUSTRATION OF DEFINITION. %e A360336 The table of coefficients of x^k in A(x)^(n+1) begins: %e A360336 n=0: [1, 1, 6, 99, 2608, 90800, 3835458, 187727106, ...]; %e A360336 n=1: [1, 2, 13, 210, 5450, 188004, 7893613, 384731112, ...]; %e A360336 n=2: [1, 3, 21, 334, 8544, 292017, 12186069, 591418401, ...]; %e A360336 n=3: [1, 4, 30, 472, 11909, 403268, 16725042, 808213780, ...]; %e A360336 n=4: [1, 5, 40, 625, 15565, 522211, 21523390, 1035561335, ...]; %e A360336 n=5: [1, 6, 51, 794, 19533, 649326, 26594644, 1273925322, ...]; %e A360336 n=6: [1, 7, 63, 980, 23835, 785120, 31953040, 1523791095, ...]; %e A360336 n=7: [1, 8, 76, 1184, 28494, 930128, 37613552, 1785666072, ...]; ... %e A360336 Compare to the table of coefficients in (1 + x*A(x)^(3*n))^(n+1): %e A360336 n=0: [1, 1, 0, 0, 0, 0, 0, 0, ...]; %e A360336 n=1: [1, 2, 7, 48, 719, 17882, 603567, 25021464, ...]; %e A360336 n=2: [1, 3, 21, 190, 2814, 65460, 2105997, 84726534, ...]; %e A360336 n=3: [1, 4, 42, 472, 7303, 162828, 4982706, 193437168, ...]; %e A360336 n=4: [1, 5, 70, 940, 15565, 341796, 10002300, 373126910, ...]; %e A360336 n=5: [1, 6, 105, 1640, 29340, 649326, 18377374, 658075230, ...]; %e A360336 n=6: [1, 7, 147, 2618, 50729, 1150968, 31953040, 1101647800, ...]; %e A360336 n=7: [1, 8, 196, 3920, 82194, 1934296, 53433184, 1785666072, ...]; ... %e A360336 to see that the main diagonals of the tables are the same. %o A360336 (PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[m+1] = (Vec((1+x*Ser(A)^(3*m))^(m+1))[m+1] - Vec(Ser(A)^(m+1))[m+1])/(m+1) ); A[n+1]} %o A360336 for(n=0, 20, print1(a(n), ", ")) %Y A360336 Cf. A360337, A360338, A302702, A360344. %K A360336 nonn %O A360336 0,3 %A A360336 _Paul D. Hanna_, Feb 06 2023