This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360338 #8 Feb 06 2023 12:08:43 %S A360338 1,1,8,152,4452,169952,7807014,413004366,24498135084,1601156353073, %T A360338 113923669100054,8747479687135221,720094655642863843, %U A360338 63228142773931718867,5897275794731167406208,582262196337324537825772,60678076577289308772410092,6656827638797910274281675184 %N A360338 G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(3*n+2))^(n+1) for n >= 0. %H A360338 Paul D. Hanna, <a href="/A360338/b360338.txt">Table of n, a(n) for n = 0..300</a> %F A360338 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: %F A360338 (1) [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(3*n+2))^(n+1) for n>=0. %F A360338 (2) A(x) = Sum_{n>=0} b(n) * x^n/A(x)^n, where b(n) = [x^n] (1 + x*A(x)^(3*n+2))^(n+1) / (n+1). %F A360338 a(n) ~ c * d^n * n! * n^alpha, where d = 5.7189630165873859806..., alpha = 1.7741677239019..., c = 0.0189263625965882... - _Vaclav Kotesovec_, Feb 06 2023 %e A360338 G.f.: A(x) = 1 + x + 8*x^2 + 152*x^3 + 4452*x^4 + 169952*x^5 + 7807014*x^6 + 413004366*x^7 + 24498135084*x^8 + 1601156353073*x^9 + ... %e A360338 RELATED SERIES. %e A360338 G.f. A(x) = B(x/A(x)) where B(x) = B(x*A(x)) begins: %e A360338 B(x) = 1 + x + 9*x^2 + 177*x^3 + 5237*x^4 + 200533*x^5 + 9220635*x^6 + 487973429*x^7 + 28953420029*x^8 + ... + b(n)*x^n + ... %e A360338 such that b(n) = [x^n] (1 + x*A(x)^(3*n+2))^(n+1) / (n+1), %e A360338 as well as b(n) = [x^n] A(x)^(n+1) / (n+1), %e A360338 so that b(n) begin: %e A360338 [1/1, 2/2, 27/3, 708/4, 26185/5, 1203198/6, 64544445/7, 3903787432/8, ...]. %e A360338 ILLUSTRATION OF DEFINITION. %e A360338 The table of coefficients of x^k in A(x)^(n+1) begins: %e A360338 n=0: [1, 1, 8, 152, 4452, 169952, 7807014, 413004366, ...]; %e A360338 n=1: [1, 2, 17, 320, 9272, 351240, 16048268, 845695400, ...]; %e A360338 n=2: [1, 3, 27, 505, 14484, 544512, 24744926, 1298895150, ...]; %e A360338 n=3: [1, 4, 38, 708, 20113, 750448, 33919144, 1773460112, ...]; %e A360338 n=4: [1, 5, 50, 930, 26185, 969761, 43594110, 2270282630, ...]; %e A360338 n=5: [1, 6, 63, 1172, 32727, 1203198, 53794085, 2790292344, ...]; %e A360338 n=6: [1, 7, 77, 1435, 39767, 1451541, 64544445, 3334457687, ...]; %e A360338 n=7: [1, 8, 92, 1720, 47334, 1715608, 75871724, 3903787432, ...]; ... %e A360338 Compare to the table of coefficients in (1 + x*A(x)^(3*n+2))^(n+1): %e A360338 n=0: [1, 1, 2, 17, 320, 9272, 351240, 16048268, ...]; %e A360338 n=1: [1, 2, 11, 110, 1985, 54730, 2003692, 89482592, ...]; %e A360338 n=2: [1, 3, 27, 325, 5928, 157206, 5548868, 241397910, ...]; %e A360338 n=3: [1, 4, 50, 708, 13443, 348700, 11883916, 502177632, ...]; %e A360338 n=4: [1, 5, 80, 1305, 26185, 675816, 22359050, 916389110, ...]; %e A360338 n=5: [1, 6, 117, 2162, 46170, 1203198, 38962709, 1549794426, ...]; %e A360338 n=6: [1, 7, 161, 3325, 75775, 2016966, 64544445, 2498939864, ...]; %e A360338 n=7: [1, 8, 212, 4840, 117738, 3228152, 103075540, 3903787432, ...]; ... %e A360338 to see that the main diagonals of the tables are the same. %o A360338 (PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[m+1] = (Vec((1+x*Ser(A)^(3*m+2))^(m+1))[m+1] - Vec(Ser(A)^(m+1))[m+1])/(m+1) ); A[n+1]} %o A360338 for(n=0, 20, print1(a(n), ", ")) %Y A360338 Cf. A360336, A360337, A360234, A360346. %K A360338 nonn %O A360338 0,3 %A A360338 _Paul D. Hanna_, Feb 06 2023