This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360341 #13 Mar 20 2024 07:57:54 %S A360341 1,10,285,14240,1036225,99774720,11995938325,1732780710400, %T A360341 292580972777025,56581144474976000,12335796889894262125, %U A360341 2994228576573719040000,800930404887937807458625,234113078032084301026816000,74248479783538967821383793125,25394786139647229685682094080000 %N A360341 a(n) = coefficient of x^n*y^(3*n+1)/n! in log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ). %H A360341 Paul D. Hanna, <a href="/A360341/b360341.txt">Table of n, a(n) for n = 1..100</a> %F A360341 E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! may be defined as follows. %F A360341 (1) A(x) = Limit_{N->oo} (1/N) * log( Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ). %F A360341 (2) a(n) = [x^n*y^(3*n+1)/n!] log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ). %F A360341 a(n) ~ c * d^n * n! / n^(5/2), where d = (25/16) * (5 + 2*sqrt(5)) * exp(5 - 2*sqrt(5)) = 25.090908742294025045771061662375185533388200826641029119554... and c = 1/(8*sqrt((1 + 2/sqrt(5))*Pi)) = 0.05123846578813482717849518499100286... - _Vaclav Kotesovec_, Feb 12 2023, updated Mar 20 2024 %e A360341 E.g.f.: A(x) = x + 10*x^2/2! + 285*x^3/3! + 14240*x^4/4! + 1036225*x^5/5! + 99774720*x^6/6! + 11995938325*x^7/7! + 1732780710400*x^8/8! + ... + a(n)*x^n/n! + ... %e A360341 where a(n) equals the coefficient of y^(4*n+1)*x^n/n! in the series given by %e A360341 log( Sum_{n>=0} (n + y)^(5*n) * x^n/n! ) = (y^5 + 5*y^4 + 10*y^3 + 10*y^2 + 5*y + 1)*x + (10*y^9 + 135*y^8 + 840*y^7 + 3150*y^6 + 7812*y^5 + 13230*y^4 + 15240*y^3 + 11475*y^2 + 5110*y + 1023)*x^2/2! + (285*y^13 + 6985*y^12 + 82800*y^11 + 626640*y^10 + 3365015*y^9 + 13480875*y^8 + 41269545*y^7 + 97340225*y^6 + 176218089*y^5 + 241023105*y^4 + 241403365*y^3 + 167262045*y^2 + 71713845*y + 14345837)*x^3/3! + (14240*y^17 + 535150*y^16 + 9965360*y^15 + 121806600*y^14 + 1090732800*y^13 + 7563031080*y^12 + 41870604200*y^11 + 188252006020*y^10 + 693127766960*y^9 + 2094270509580*y^8 + 5176075514880*y^7 + 10375810342800*y^6 + 16622405553984*y^5 + 20792525880990*y^4 + 19576849364160*y^3 + 13053873999580*y^2 + 5496952909520*y + 1099451098702)*x^4/4! + ... %e A360341 Exponentiation yields the e.g.f. of A266484: %e A360341 exp(A(x)) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + ... + A266484(n)*x^n/n! + ... %e A360341 which equals %e A360341 lim_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N). %e A360341 RELATED SEQUENCES. %e A360341 a(n) is divisible by n where a(n)/n begins: %e A360341 [1, 5, 95, 3560, 207245, 16629120, 1713705475, 216597588800, ...]. %o A360341 (PARI) /* Using logarithmic formula */ %o A360341 {a(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(5*m) *x^m/m! ) +x*O(x^n) ), n, x), 4*n+1, y)} %o A360341 for(n=1, 20, print1(a(n), ", ")) %Y A360341 Cf. A266484, A360339, A360340. %K A360341 nonn %O A360341 1,2 %A A360341 _Paul D. Hanna_, Feb 10 2023