This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360349 #10 Feb 13 2023 03:40:43 %S A360349 1,1,5,38,391,5077,79535,1458264,30621237,724555611,19076629520, %T A360349 553236991215,17525729241605,602215048797900,22312035980459259, %U A360349 886733059906749795,37631474149766344476,1698581174869953607957,81257725943229600518977,4106922637708383448243974 %N A360349 G.f. A(x) = exp( Sum_{k>=1} A360348(k) * x^k/k ), where A360348(k) = [y^k*x^k/k] log( Sum_{m>=0} (1 + m*y + y^2)^m * x^m ) for k >= 1. %C A360349 Related series: M(x) = exp( Sum_{k>=1} A002426(k) * x^k/k ), where M(x) = 1 + x*M(x) + x^2*M(x)^2 is the Motzkin function (A001006) and A002426(k) = [y^k*x^k/k] log( Sum_{m>=0} (1 + y + y^2)^m * x^m ) for k >= 1. %H A360349 Paul D. Hanna, <a href="/A360349/b360349.txt">Table of n, a(n) for n = 0..300</a> %F A360349 a(n) ~ BesselI(0, 2) * n^n. - _Vaclav Kotesovec_, Feb 12 2023 %e A360349 G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 391*x^4 + 5077*x^5 + 79535*x^6 + 1458264*x^7 + 30621237*x^8 + 724555611*x^9 + ... %e A360349 such that %e A360349 log(A(x)) = x + 9*x^2/2 + 100*x^3/3 + 1381*x^4/4 + 22771*x^5/5 + 435138*x^6/6 + 9442049*x^7/7 + 229265109*x^8/8 + ... + A360348(n)*x^n/n + ... %e A360349 where A360348(n) equals the coefficient of y^n*x^n/n in the logarithmic series: %e A360349 log( Sum_{m>=0} (1 + m*y + y^2)^m * x^m ) = (y^2 + y + 1)*x + (y^4 + 6*y^3 + 9*y^2 + 6*y + 1)*x^2/2 + (y^6 + 15*y^5 + 63*y^4 + 100*y^3 + 63*y^2 + 15*y + 1)*x^3/3 + (y^8 + 28*y^7 + 242*y^6 + 872*y^5 + 1381*y^4 + 872*y^3 + 242*y^2 + 28*y + 1)*x^4/4 + (y^10 + 45*y^9 + 665*y^8 + 4430*y^7 + 14545*y^6 + 22771*y^5 + 14545*y^4 + 4430*y^3 + 665*y^2 + 45*y + 1)*x^5/5 + ... %o A360349 (PARI) {A360348(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (1 + m*y + y^2)^m *x^m ) +x*O(x^n) ), n, x), n, y)} %o A360349 {a(n) = polcoeff( exp( sum(m=1,n, A360348(m)*x^m/m ) +x*O(x^n)),n)} %o A360349 for(n=0,20,print1(a(n),", ")) %Y A360349 Cf. A360348, A360239, A186925, A001006, A002426. %K A360349 nonn %O A360349 0,3 %A A360349 _Paul D. Hanna_, Feb 12 2023