cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A360358 Numbers k such that A360327(k) = A360327(k+1) > 1.

Original entry on oeis.org

714, 6603, 16115, 18920, 23154, 24530, 39984, 41360, 42789, 51204, 56814, 58190, 59619, 60995, 65229, 66605, 68034, 69410, 73644, 79304, 82059, 84249, 84864, 86240, 94655, 101375, 101694, 103070, 107304, 108680, 121374, 125510, 126125, 126939, 135128, 135354, 137329
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2023

Keywords

Comments

Numbers k such that A360327(k) = A360327(k+1) = 1 are terms of A360357.

Examples

			714 is a term since A360327(714) = A360327(715) = 72 > 1.
		

Crossrefs

Similar sequences: A002961, A064115, A064125, A293183, A306985, A360359.

Programs

  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], (p^(e+1)-1)/(p-1), 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; s1 = s[1]; n = 2; c = 0; While[c < 40, s2 = s[n]; If[s1 == s2 > 1, c++; AppendTo[seq, n - 1]]; s1 = s2; n++]; seq
  • PARI
    s(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), (p[i]^(e[i]+1)-1)/(p[i]-1), 1));}
    lista(nmax) = {my(s1 = s(1), s2); for(n=2, nmax, s2=s(n); if(s2 > 1 && s1 == s2, print1(n-1, ", ")); s1 = s2); }
Showing 1-1 of 1 results.