cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360359 Numbers k such that A360331(k) = A360331(k+1).

This page as a plain text file.
%I A360359 #10 Feb 06 2023 01:27:53
%S A360359 69,574,713,781,2394,2506,5699,5750,6499,6509,8441,19250,26529,32130,
%T A360359 36549,38065,41749,41929,43239,48025,50301,53037,53382,59178,59822,
%U A360359 61754,66906,67689,70277,71198,81620,94000,100775,119214,124640,127442,134665,153202,154908
%N A360359 Numbers k such that A360331(k) = A360331(k+1).
%H A360359 Amiram Eldar, <a href="/A360359/b360359.txt">Table of n, a(n) for n = 1..1000</a>
%e A360359 69 is a term since A360331(69) = A360331(70) = 24.
%t A360359 f[p_, e_] := If[PrimeQ[PrimePi[p]], 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; s1 = s[1]; n = 2; c = 0; While[c < 40, s2 = s[n]; If[s1 == s2, c++; AppendTo[seq, n - 1]]; s1 = s2; n++]; seq
%o A360359 (PARI) s(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), 1, (p[i]^(e[i]+1)-1)/(p[i]-1)));}
%o A360359 lista(nmax) = {my(s1 = s(1), s2); for(n=2, nmax, s2=s(n); if(s1 == s2, print1(n-1, ", ")); s1 = s2); }
%Y A360359 Cf. A360331.
%Y A360359 Similar sequences: A002961, A064115, A064125, A293183, A306985, A360358.
%K A360359 nonn
%O A360359 1,1
%A A360359 _Amiram Eldar_, Feb 04 2023