This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360377 #8 Jun 04 2023 23:50:37 %S A360377 1,1,1,2,2,1,7,8,6,2,8,6,10,17,2,21,23,24,26,11,7,12,20,1,6,39,40,10, %T A360377 26,17,49,8,53,21,14,36,6,63,40,10,69,27,7,46,76,2,81,33,54,88,1,92, %U A360377 14,23,38,64,66,42,27,74,18,80,84,53,54,90,94,59,60,24 %N A360377 a(n) = number of the row of the Wythoff array (A035513) that includes prime(n). %C A360377 Conjecture: every primitive row number, as defined in A332938, occurs infinitely many times in this sequence. %F A360377 Every prime p has a unique representation p = p(m,k) = F(k+1)*[m*tau] + (m-1)*F(k), where F(h) = A000045(h) = h-th Fibonacci number, [ ] = floor, and tau = (1+sqrt(5))/2 = golden ratio, as in A001622. Here, a(n) is the number m such that prime(n) = p(m,k) for some k. %e A360377 The 10th prime is 29, which occurs in row 7, so a(10) = 2. %t A360377 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A360377 t = Table[W[n, k], {n, 100}, {k, 1, 20}]; %t A360377 a[n_] := Select[Range[100], MemberQ[t[[#]], Prime[n]] &] %t A360377 Flatten[Table[a[n], {n, 1, 100}]] %Y A360377 Cf. A000040, A035513, A332938, A360378, A360379, A360380. %K A360377 nonn,easy %O A360377 1,4 %A A360377 _Clark Kimberling_, Feb 04 2023