This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360382 #22 Mar 04 2023 15:27:54 %S A360382 10,9,13,353,144 %N A360382 Least integer m whose n-th power can be written as a sum of four distinct positive n-th powers. %F A360382 a(n) = Minimum(m) such that m^n = a^n + b^n + c^n + d^n and 0 < a < b < c < d < m. %e A360382 a(3) = 13 because 13^3 = 1^3 + 5^3 + 7^3 + 12^3 and no smaller cube may be written as the sum of 4 positive distinct cubes. %e A360382 Terms in this sequence and their representations are: %e A360382 10^1 = 1 + 2 + 3 + 4. %e A360382 9^2 = 2^2 + 4^2 + 5^2 + 6^2. %e A360382 13^3 = 1^3 + 5^3 + 7^3 + 12^3. %e A360382 353^4 = 30^4 + 120^4 + 272^4 + 315^4. %e A360382 144^5 = 27^5 + 84^5 + 110^5 + 133^5. %t A360382 n = 5; SelectFirst[ %t A360382 Range[200], (s = %t A360382 IntegerPartitions[#^n, {4, 4}, Range[1, # - 1]^n]^(1/n); (Select[ %t A360382 s, #[[1]] > #[[2]] > #[[3]] > #[[4]] > 0 &] != {})) &] %o A360382 (Python) %o A360382 def s(n): %o A360382 p=[k**n for k in range(360)] %o A360382 for k in range(4,360): %o A360382 for d in range(k-1,3,-1): %o A360382 if 4*p[d]>p[k]: %o A360382 cc=p[k]-p[d] %o A360382 for c in range(d-1,2,-1): %o A360382 if 3*p[c]>cc: %o A360382 bb=cc-p[c] %o A360382 for b in range(c-1,1,-1): %o A360382 if 2*p[b]>bb: %o A360382 aa=bb-p[b] %o A360382 if aa>0 and aa in p: %o A360382 a=round(aa**(1/n)) %o A360382 return(n,k,[a,b,c,d]) %o A360382 for n in range(1,6): %o A360382 print(s(n)) %Y A360382 Cf. A007666, A039664, A003294, A134341. %K A360382 nonn,more %O A360382 1,1 %A A360382 _Zhining Yang_, Feb 04 2023