This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360395 #8 Feb 22 2023 08:07:43 %S A360395 1,6,9,15,19,24,27,31,36,42,45,51,55,60,66,69,73,78,81,87,91,96,99, %T A360395 103,108,114,117,121,126,129,135,139,144,150,153,159,163,168,171,175, %U A360395 180,186,189,195,199,204,210,213,217,222,225,231,235,240,246,249,255 %N A360395 Intersection of A026430 and A360394. %C A360395 This is the second of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite: %C A360395 (1) u ^ v = intersection of u and v (in increasing order); %C A360395 (2) u ^ v'; %C A360395 (3) u' ^ v; %C A360395 (4) u' ^ v'. %C A360395 Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively. %C A360395 For A360395, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows: %C A360395 u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430 %C A360395 u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u %C A360395 v = u + 1 = A285954, except its initial 1 %C A360395 v' = complement of v. %e A360395 (1) u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) = A360394 %e A360395 (2) u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) = A360395 %e A360395 (3) u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396 %e A360395 (4) u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397 %t A360395 z = 400; %t A360395 u = Accumulate[1 + ThueMorse /@ Range[0, z]]; (* A026430 *) %t A360395 u1 = Complement[Range[Max[u]], u]; (* A356133 *) %t A360395 v = u + 2 ; (* A360392 *) %t A360395 v1 = Complement[Range[Max[v]], v]; (* A360393 *) %t A360395 Intersection[u, v] (* A360394 *) %t A360395 Intersection[u, v1] (* A360395 *) %t A360395 Intersection[u1, v] (* A360396 *) %t A360395 Intersection[u1, v1] (* A360397 *) %Y A360395 Cf. A026430, A356133, A360392-A360394, A360396-A360405. %K A360395 nonn,easy %O A360395 1,2 %A A360395 _Clark Kimberling_, Feb 05 2023