This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360397 #10 Feb 22 2023 12:35:25 %S A360397 2,4,13,22,34,40,49,58,64,76,85,94,106,112,124,133,142,148,157,166, %T A360397 178,184,193,202,208,220,229,238,244,253,262,274,280,292,301,310,322, %U A360397 328,337,346,352,364,373,382,394,400,412,421,430,436,445,454,466,472 %N A360397 Intersection of A356133 and A360393. %C A360397 This is the fourth of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite: %C A360397 (1) u ^ v = intersection of u and v (in increasing order); %C A360397 (2) u ^ v'; %C A360397 (3) u' ^ v; %C A360397 (4) u' ^ v'. %C A360397 Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively. %C A360397 For A360397, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows: %C A360397 u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430; %C A360397 u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u; %C A360397 v = u + 1 = A285954, except its initial 1; %C A360397 v' = complement of v. %e A360397 (1) u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) = A360394 %e A360397 (2) u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) = A360395 %e A360397 (3) u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396 %e A360397 (4) u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397 %t A360397 z = 400; %t A360397 u = Accumulate[1 + ThueMorse /@ Range[0, z]]; (* A026430 *) %t A360397 u1 = Complement[Range[Max[u]], u]; (* A356133 *) %t A360397 v = u + 2 ; (* A360392 *) %t A360397 v1 = Complement[Range[Max[v]], v]; (* A360393 *) %t A360397 Intersection[u, v] (* A360394 *) %t A360397 Intersection[u, v1] (* A360395 *) %t A360397 Intersection[u1, v] (* A360396 *) %t A360397 Intersection[u1, v1] (* A360397 *) %Y A360397 Cf. A026430, A356133, A360392-A360396, A360398-A360405. %K A360397 nonn,easy %O A360397 1,1 %A A360397 _Clark Kimberling_, Feb 10 2023