This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360398 #4 Mar 04 2023 15:26:25 %S A360398 5,8,10,12,15,16,18,21,24,26,27,30,31,35,37,39,42,44,45,48,50,52,55, %T A360398 57,59,61,65,66,69,70,72,75,78,80,81,84,86,88,91,93,95,98,100,102,105, %U A360398 107,108,111,113,116,118,120,123,125,126,129,132,134,135,138 %N A360398 a(n) = A026430(1 + A360392(n)). %C A360398 This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences: %C A360398 (1) u o v, defined by (u o v)(n) = u(v(n)); %C A360398 (2) u o v'; %C A360398 (3) u' o v; %C A360398 (4) v' o u'. %C A360398 Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405). %e A360398 (1) u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398 %e A360398 (2) u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399 %e A360398 (3) u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400 %e A360398 (4) u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401 %t A360398 z = 2000; %t A360398 u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *) %t A360398 u1 = Complement[Range[Max[u]], u]; (* A356133 *) %t A360398 v = u + 2; (* A360392 *) %t A360398 v1 = Complement[Range[Max[v]], v]; (* A360393 *) %t A360398 zz = 100; %t A360398 Table[u[[v[[n]]]], {n, 1, zz}] (* A360398 *) %t A360398 Table[u[[v1[[n]]]], {n, 1, zz}] (* A360399 *) %t A360398 Table[u1[[v[[n]]]], {n, 1, zz}] (* A360400 *) %t A360398 Table[u1[[v1[[n]]]], {n, 1, zz}] (* A360401 *) %Y A360398 Cf. A026530, A356133, A360392, A360393, A360399, A286355, A286356, A360394 (intersections instead of results of composition), A360402-A360405. %K A360398 nonn,easy %O A360398 1,1 %A A360398 _Clark Kimberling_, Feb 10 2023