cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360404 a(n) = A360392(A356133(n)).

This page as a plain text file.
%I A360404 #7 Jun 21 2025 00:45:31
%S A360404 5,8,12,18,21,28,32,35,39,46,50,53,59,62,67,72,75,82,86,89,95,98,102,
%T A360404 109,113,116,120,127,130,136,140,143,147,154,158,161,167,170,174,181,
%U A360404 185,188,192,198,201,207,212,215,221,224,228,234,237,243,248,251
%N A360404 a(n) = A360392(A356133(n)).
%C A360404 This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
%C A360404 (1) v o u, defined by (v o u)(n) = v(u(n));
%C A360404 (2) v' o u;
%C A360404 (3) v o u';
%C A360404 (4) v' o u.
%C A360404 Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively (and likewise for A360394-A360401).
%e A360404 (1)  v o u = (3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, ...) = A360402
%e A360404 (2)  v' o u = (1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, ...) = A360403
%e A360404 (3)  v o u' = (5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, ...) = A360404
%e A360404 (4)  v' o u' = (2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, ...) = A360405
%t A360404 z = 2000; zz = 100;
%t A360404 u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
%t A360404 u1 = Complement[Range[Max[u]], u];  (* A356133 *)
%t A360404 v = u + 2;  (* A360392 *)
%t A360404 v1 = Complement[Range[Max[v]], v];  (* A360393 *)
%t A360404 Table[v[[u[[n]]]], {n, 1, zz}]     (* A360402 *)
%t A360404 Table[v1[[u[[n]]]], {n, 1, zz}]    (* A360403 *)
%t A360404 Table[v[[u1[[n]]]], {n, 1, zz}]    (* A360404 *)
%t A360404 Table[v1[[u1[[n]]]], {n, 1, zz}]   (* A360405 *)
%Y A360404 Cf. A026530, A360392, A360393, A360394-A3546352 (intersections instead of results of compositions), A360398-A360401 (results of reversed compositions), A360402, A360403, A360405.
%K A360404 nonn,easy
%O A360404 1,1
%A A360404 _Clark Kimberling_, Apr 01 2023